当我从 keras 转换为 pytorch 时,我得到 AttributeError: ‘Network’ object has no attribute ‘network’

扎眼的阳光 pytorch 271

原文标题when I Convert from keras to pytorch I get AttributeError: ‘Network’ object has no attribute ‘network’

def build_model(dropout_rate=0.5):

    model = Sequential()
    model.add(Lambda(lambda x: x/127.5-1.0, input_shape=p.INPUT_SHAPE)) #normalize the data
    model.add(Conv2D(24, (5,5), strides=(2, 2), activation='elu'))
    model.add(Conv2D(36, (5,5), strides=(2, 2), activation='elu'))
    model.add(Conv2D(48, (5,5), strides=(2, 2), activation='elu'))
    model.add(Conv2D(64, (3,3), activation='elu'))
    model.add(Conv2D(64, (3,3), activation='elu'))
    model.add(Dropout(dropout_rate)) 
    model.add(Flatten())
    model.add(Dense(100, activation='elu'))
    model.add(Dense(50, activation='elu'))
    model.add(Dense(10, activation='elu'))
    model.add(Dense(1))
    model.summary() # prints out the model description
    return model

model = build_model()
class Network(nn.Module):
    def __init__(self):
        super(Network, self).__init__()
        self.layer1 = torch.nn.Sequential(
            
            torch.nn.Conv2d(3, 24, kernel_size=5, stride=2, padding=1),
            torch.nn.ELU())
        self.layer2 = torch.nn.Sequential(
            torch.nn.Conv2d(1, 36, kernel_size=5, stride=2, padding=1),
            torch.nn.ELU())
        self.layer3 = torch.nn.Sequential(
            torch.nn.Conv2d(1, 48, kernel_size=5, stride=2, padding=1),
            torch.nn.ELU())
        self.layer4 = torch.nn.Sequential(
            torch.nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1),
            torch.nn.ELU(),
            torch.nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1),
            torch.nn.ELU(),
            torch.nn.Dropout(p=DROPOUT_PROB))
        self.fc1 = torch.nn.Sequential(
            torch.nn.Linear(in_features=100, out_features=50),
            torch.nn.Dropout(p=DROPOUT_PROB))
        self.fc2 = torch.nn.Sequential(
            torch.nn.Linear(in_features=50, out_features=10),
            torch.nn.Dropout(p=DROPOUT_PROB))
        self.fc3 = torch.nn.Sequential(
            torch.nn.Linear(in_features=10, out_features=OUTPUT_SIZE))
            
          
        
    

        
    def forward(self, x):
        y = self.network(x)
        y = self.layer2(y)
        y = self.layer3(y)
        y = self.layer4(y)
        y = out.view(out.size(0), -1)   # Flatten them for FC
        y = self.fc1(y)
        y = self.fc2(y)
        y = self.fc3(y)
        return y

    def save_to_path(self, path):
        torch.save(self.state_dict(), path)
        
    def load_from_path(self, path):
        self.load_state_dict(torch.load(path))

model = Network()

model architecture

原文链接:https://stackoverflow.com//questions/71418836/when-i-convert-from-keras-to-pytorch-i-get-attributeerror-network-object-has

回复

我来回复
  • noob的头像
    noob 评论

    你不要在forward函数中调用网络你调用的第一层将y = self.network(x)改为y = self.layer1(x)

    2年前 0条评论
此站出售,如需请站内私信或者邮箱!