PyTorch 稀疏张量上的快速 GPU 计算

原文标题Fast GPU computation on PyTorch sparse tensor

是否可以对 PyTorch MxN 张量的每一行进行操作,但只能在某些索引(例如非零)处进行操作以节省时间?

我对 M 和 N 非常大的情况特别感兴趣,其中每行上只有几个元素不为空。

(玩具示例)从这个大张量:

Large = Tensor([[0, 1, 3, 0, 0, 0],
                [0, 0, 0, 0, 5, 0],
                [1, 0, 0, 5, 0, 1]])

我想使用类似以下较小的“张量”:

irregular_tensor = [ [1, 3],
                     [5],
                     [1, 5, 1]]

并对每一行进行相同的精确计算(例如涉及torch.cumsumtorch.exp)以获得大小为 Mx1 的输出。

有没有办法做到这一点?

原文链接:https://stackoverflow.com//questions/71531822/fast-gpu-computation-on-pytorch-sparse-tensor

回复

我来回复
  • D.L的头像
    D.L 评论

    这用list comprehension方法减少了张量(list of lists),速度很快。

    #  original large tensor
    Large_tensor = [ [0, 1, 3, 0, 0, 0],
                     [0, 0, 0, 0, 5, 0],
                     [1, 0, 0, 5, 0, 1]]
    
    # size of tensor
    imax = len(Large_tensor)
    jmax = len(Large_tensor[0])
    print(f'the tensor is of size {imax} x {jmax}')
    
    small_tensor = [[x for x in row if x!=0] for row in Large_tensor]
    
    # result
    print('large tensor: ', Large_tensor)
    print('small tensor: ', small_tensor)
    

    结果是:

    the tensor is of size 3 x 6
    large tensor:  [[0, 1, 3, 0, 0, 0], [0, 0, 0, 0, 5, 0], [1, 0, 0, 5, 0, 1]]
    small tensor:  [[1, 3], [5], [1, 5, 1]]
    

    另一种方法通过iterating通过large_tensor的分量减少张量以创建具有非零值的small_tensor(根据问题)。

    #  original large tensor
    Large_tensor = [ [0, 1, 3, 0, 0, 0],
                     [0, 0, 0, 0, 5, 0],
                     [1, 0, 0, 5, 0, 1]]
    
    # example of how to reference tensor
    i = 0
    j = 2
    imax = len(Large_tensor)
    jmax = len(Large_tensor[0])
    print(Large_tensor[i][j])
    
    # the dimension of the tensor
    print(f'the tensor is of size {imax} x {jmax}')
    
    # empty list for the new small tensor
    small_tensor = []
    
    # process of reducing
    for i in range(imax):
        small_tensor.append([])
        for j in range(jmax):
            if Large_tensor[i][j]!=0:
                small_tensor[i].append(Large_tensor[i][j])
                print(i, j)
    
    # result
    print('large tensor: ', Large_tensor)
    print('small tensor: ', small_tensor)
    

    输出是:

    large tensor:  [[0, 1, 3, 0, 0, 0], [0, 0, 0, 0, 5, 0], [1, 0, 0, 5, 0, 1]]
    small tensor:  [[1, 3], [5], [1, 5, 1]]
    

    结论:显示了两种快速方法。可能还有更快的方法使用外部模块,例如numpySciPy

    2年前 0条评论
此站出售,如需请站内私信或者邮箱!