如何返回每个交叉验证预测的结果

原文标题How do I return the result of each cross validation prediction

我有一项任务需要我分析模型,但我需要每个交叉验证步骤的输出预测以及交叉验证在该步骤中使用的数据。

这是我的代码:

results= cross_validate(MLPClassifier, X_train, y_train, cv=5,return_estimator = True)  

这没有用。还,

results= cross_val_predict(MLPClassifier, X_train, y_train, cv=5)  

两者都不起作用,但是第二种方法给了我一组预测,它们是 y_train (标签)的形状。但是,我希望返回一个较小的值,例如 y_train 大小的 10%。此外,我不确定如何获取用于每个交叉验证步骤的数据。

原文链接:https://stackoverflow.com//questions/71666470/how-do-i-return-the-result-of-each-cross-validation-prediction

回复

我来回复
  • Tim的头像
    Tim 评论

    使用其中一个交叉验证迭代器怎么样?

    from sklearn.datasets import make_classification
    from sklearn.model_selection import ShuffleSplit
    from sklearn.neural_network import MLPClassifier
    
    X, y = make_classification(n_samples=1000, random_state=0)
    datasets = {}  # [(X_train, y_train), (X_test, y_test)]
    results = {}
    
    ss = ShuffleSplit(n_splits=5, test_size=0.25, random_state=0)
    for idx, (train_index, test_index) in enumerate(ss.split(X)):
        X_train, y_train = X[train_index], y[train_index]
        X_test, y_test = X[test_index], y[test_index]
    
        datasets[f"train_{idx}"] = X_train, y_train
        datasets[f"test_{idx}"] = X_test, y_test
    
        model = MLPClassifier(random_state=0).fit(X_train, y_train)
        results[f"accuracy_{idx}"] = model.score(X_test, y_test)
    
    results
    

    输出:

    {'accuracy_0': 0.968,
     'accuracy_1': 0.924,
     'accuracy_2': 0.94,
     'accuracy_3': 0.944,
     'accuracy_4': 0.964}
    
    2年前 0条评论
此站出售,如需请站内私信或者邮箱!