利用2D CNN实现人体行为识别

UCI—HAR数据集包含两类数据:

一类是从三轴加速度传感器获得的时间序列(数据集中共包含了9个传感器数据)

利用2D CNN实现人体行为识别

还有一类数据集是经过特征工程之后获得的数据:每个特征向量包含561个特征数。

数据集下载地址:UCI Machine Learning Repository: Human Activity Recognition Using Smartphones Data Set

尝试将一维的数据拼接成2维矩阵,送入CNN网络中:

首先导入数据:

# 导入数据:
def load_X(X_signals_paths):
    X_signals = []

    for signal_type_path in X_signals_paths:
        file = open(signal_type_path, 'r')
        X_signals.append(
            [np.array(serie, dtype=np.float32) for serie in
             [row.replace('  ', ' ').strip().split(' ') for row in file]])
        file.close()

    return np.transpose(np.array(X_signals), (1, 2, 0))
def load_y(y_path):
    file = open(y_path, 'r')
    y_ = np.array([elem for elem in [row.replace('  ', ' ').strip().split(' ') for row in                     
    file]], dtype=np.int32)
    file.close()
    return y_ - 1

标签设置成one-hot:

# 制作one-hot
def one_hot(y_):
    y_ = y_.reshape(len(y_))
    n_values = int(np.max(y_)) + 1
    return np.eye(n_values)[np.array(y_, dtype=np.int32)]

导入的数据格式为[7352,128,9](训练集)和 [2947,128,6](测试集)。

接下来就可将数据送入CNN中:

注意这里发送的数据格式:

model.add(tf.keras.layers.Conv2D(126, (4, 4), input_shape=(8, 16, 9), activation='relu'))#126个卷积核,大小为4*4 转换成的矩阵为8*16

将原始时间序列的128拆解为矩阵(8*16),可将数据集中9个传感器数据理解为9个通道。

构建2D CNN网络,以单层为例:

# 构建2D CNN
    model = Sequential()
    model.add(tf.keras.layers.Conv2D(126, (4, 4), input_shape=(8, 16, 9), activation='relu'))#126个卷积核,大小为1*16 转换成的矩阵为1*128 
    model.add(tf.keras.layers.GlobalAveragePooling2D())
    model.add(Dense(200, activation='relu'))
    model.add(Dense(n_outputs, activation='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)
    _, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)
    predict=model.predict(testX,verbose=1)

试了很多次,发现卷积层数对精度没有影响。

完整代码:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.utils import to_categorical
import tensorflow as tf
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt


# 导入数据:
def load_X(X_signals_paths):
    X_signals = []

    for signal_type_path in X_signals_paths:
        file = open(signal_type_path, 'r')
        X_signals.append(
            [np.array(serie, dtype=np.float32) for serie in
             [row.replace('  ', ' ').strip().split(' ') for row in file]])
        file.close()

    return np.transpose(np.array(X_signals), (1, 2, 0))
def load_y(y_path):
    file = open(y_path, 'r')
    y_ = np.array([elem for elem in [row.replace('  ', ' ').strip().split(' ') for row in file]], dtype=np.int32)
    file.close()
    return y_ - 1
# 制作one-hot
def one_hot(y_):
    y_ = y_.reshape(len(y_))
    n_values = int(np.max(y_)) + 1
    return np.eye(n_values)[np.array(y_, dtype=np.int32)]

# 数据路径:
INPUT_SIGNAL_TYPES = [
        'body_acc_x_',
        'body_acc_y_',
        'body_acc_z_',
        'body_gyro_x_',
        'body_gyro_y_',
        'body_gyro_z_',
        'total_acc_x_',
        'total_acc_y_',
        'total_acc_z_'
    ]

# 六种行为标签,行走 站立 躺下 坐下 上楼 下楼
LABELS = [
        'WALKING',
        'WALKING_UPSTAIRS',
        'WALKING_DOWNSTAIRS',
        'SITTING',
        'STANDING',
        'LAYING'
    ]

# 指定数据路径
DATASET_PATH = 'D:/xiangmu/UCI HAR Dataset/'
TRAIN = 'train/'
TEST = 'test/'

X_train_signals_paths = [
        DATASET_PATH + TRAIN + 'Inertial Signals/' + signal + 'train.txt' for signal in INPUT_SIGNAL_TYPES
    ]
X_test_signals_paths = [DATASET_PATH + TEST + 'Inertial Signals/' + signal + 'test.txt' for signal in
                            INPUT_SIGNAL_TYPES]
y_train_path = DATASET_PATH + TRAIN + 'y_train.txt'
y_test_path = DATASET_PATH + TEST + 'y_test.txt'


def evaluate(trainX, trainy, testX, testy):
    verbose, epochs, batch_size = 1, 25, 64
    n_features, n_outputs = 9, 6#原始数据集共9个传感器(可理解为CNN输入的9个通道)、6类动作
    n_l, n_h = 8, 16#原始一维数据(序列)转换成矩阵后的长和宽
    trainX = X_train.reshape((7352, n_l, n_h, n_features))
    testX =  X_test.reshape((2947, n_l, n_h, n_features))
    # 构建2D CNN
    model = Sequential()
    model.add(tf.keras.layers.Conv2D(126, (4, 4), input_shape=(8, 16, 9), activation='relu'))#126个卷积核,大小为1*16 转换成的矩阵为1*128
    #model.add(tf.keras.layers.Conv2D(126, (4, 4), input_shape=(8, 16, 9), activation='relu'))   126个卷积核,大小为4*4的情况
    model.add(tf.keras.layers.GlobalAveragePooling2D())
    model.add(Dense(200, activation='relu'))
    model.add(Dense(n_outputs, activation='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)
    _, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)
    predict=model.predict(testX,verbose=1)
    return accuracy,predict

# 计算准确率
def Accuracy(accuracy):
    scores = list()
    score = accuracy
    score = score * 100.0
    scores.append(score)
    mean, std = np.mean(scores), np.std(scores)
    print('Accuracy: %.3f%% (+/-%.3f)' % (mean, std))
#分类混淆矩阵
def plot_confusion_matrix(y_true, y_pred):
    C = confusion_matrix(y_true, y_pred, labels=[0, 1, 2, 3, 4, 5])
    plt.matshow(C, cmap=plt.cm.Reds)
    # plt.colorbar()
    for i in range(len(C)):
        for j in range(len(C)):
            plt.annotate(C[j, i], xy=(i, j), horizontalalignment='center', verticalalignment='center')
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show()

if __name__ == '__main__':
    X_train = load_X(X_train_signals_paths)
    X_test = load_X(X_test_signals_paths)
    y_train = one_hot(load_y(y_train_path))
    y_test = one_hot(load_y(y_test_path))
    accuracy,x=evaluate(X_train, y_train, X_test, y_test)
    print(Accuracy(accuracy))
#绘制分类混淆矩阵
    predict_y=[]
    true_y=[]
    for i in range(len(x)):
        predict_y.append(np.argmax(x[i],axis=0))
    for i in range(2947):
        true_y.append(load_y(y_test_path)[i][0])
    y_pred = predict_y
    y_true = true_y

    plot_confusion_matrix(y_true, y_pred)


最终分类结果:

利用2D CNN实现人体行为识别

准确率大约92.094%,即使增加卷积层或者改变卷积核准确率也仅有92%左右。

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
乘风的头像乘风管理团队
上一篇 2022年3月21日
下一篇 2022年3月22日

相关推荐