220324_221124-深度学习复习总结-PyTorch工具包(图片视频文本)

PyTorch工具包

计算机视觉(Computer vision),有TorchVision、TorchVideo等用于图片和视频处理;

对于自然语言处理(Natural language processing(NLP)),有torchtext;

对于图卷积(convolution)网络,有PyTorch Geometric

数据预处理工具、数据增强、通用(GPU general purpose GPU)模型结构的预定义、预训练(pretraining)模型权重、通用(GPU general purpose GPU)损失函数(Loss function)、通用(GPU general purpose GPU)评估指标、打包的训练和测试模块以及可视化工具。

1. torchvision

我们经常会用到torchvision来调用预训练(pretraining)模型,加载数据集(Dataset),对图片进行数据增强的操作。

1.1 torchvision简介

torchvision包含了在计算机视觉(Computer vision)中常常用到的数据集(Dataset),模型和图像处理的方式

  • torchvision.datasets *
  • torchvision.tramsforms *
  • torchvision.models *
  • torchvision.io
  • torchvision.ops
  • torchvision.utils

1.2 torchvision.datasets

计算机视觉(Computer vision)中的常见数据集(Dataset):

CaltechCelebACIFARCityscapes
EMNISTFakeDataFashion-MNISTFlickr
ImageNetKinetics-400KITTIKMNIST
PhotoTourPlaces365QMNISTSBD
SEMEIONSTL10SVHNUCF101
VOCWIDERFace

1.3 torchvision.transforms

计算机视觉(Computer vision)中处理的数据集(Dataset)很大一部分是图像类型的。如果获取的数据格式或大小不同,则需要进行归一化(Normalization)、大小缩放等操作。这些是常用的数据预处理方法。 .此外,在图像数据有限的情况下,我们还需要对现有的图像数据进行各种变换,比如缩小或放大、水平或垂直翻转(flip)等,这些都是常见的数据增强方法。

from torchvision import transforms

data_transform = transforms.Compose([
    transforms.ToPILImage(),  # 这一步取决于后续的数据读取方式,如果使用内置数据集(Dataset)则不需要
    transforms.Resize(image_size),
    transforms.ToTensor()
])

1.4 torchvision.models

PyTorch提供了一些预训练(pretraining)好的模型可以分为以下几类:

1.4.1 Classification

在图像分类里面,PyTorch官方提供了以下模型,并正在不断增多。

AlexNetVGGResNetSqueezeNet
DenseNetInception v3GoogLeNetShuffleNet v2
MobileNetV2MobileNetV3ResNextWide ResNet
MNASNetEfficientNetRegNet持续更新

1.4.2 Semantic Segmentation

语义分割的预训练(pretraining)模型是在COCO train2017的子集上进行训练的,提供了20个类别,包括background, aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa,train, tvmonitor。

FCN ResNet50FCN ResNet101DeepLabV3 ResNet50DeepLabV3 ResNet101
LR-ASPP MobileNetV3-LargeDeepLabV3 MobileNetV3-Large未完待续

具体我们可以点击这里查看预训练(pretraining)模型的mean IOUglobal pixelwise acc

1.4.3 Object Detection,instance Segmentation and Keypoint Detection

物体目标检测,实例分割和人体关键点目标检测的模型我们同样是在COCO train2017进行训练的

Faster R-CNNMask R-CNNRetinaNetSSDlite
SSD

1.4.4 Video classification

视频分类模型是在 Kinetics-400数据集(Dataset)上进行预训练(pretraining)的

这个数据集(Dataset)包括了四百种的人体动作类别,每一种类别都至少有400个视频片段,每个片段都取自不同的Youtube视频,持续大概十秒。数据集(Dataset)的动作类别包括人和物体的交互-比如弹奏乐器;人与人的交互-比如握手。

ResNet 3D 18ResNet MC 18ResNet (2+1) D

同样,我们也可以点击这里查看这些型号的Clip acc@1Clip acc@5

1.5 torchvision.io

torchvision.io提供了视频、图片和文件的 IO 操作的功能,它们包括读取、写入、编解码处理操作。

在使用torchvision.io的过程中,我们需要注意以下几点:

  • 不同版本之间, torchvision.io 有着较大变化,因此在使用时,需要查看下我们的 torchvision 版本是否存在你想使用的方法。
  • 除了read_video()等方法,torchvision.io为我们提供了一个细粒度的视频API torchvision.io.VideoReader() ,它具有更高的效率并且更加接近底层处理。在使用时,我们需要先安装ffmpeg然后从源码重新编译torchvision我们才能我们能使用这些方法。
  • 在使用Video相关API时,我们最好提前安装好PyAV这个库。

1.6 torchvision.ops

torchvision.ops 为我们提供了许多计算机视觉(Computer vision)的特定操作,包括但不仅限于NMS,RoIAlign(MASK R-CNN中应用的一种方法),RoIPool(Fast R-CNN中用到的一种方法)。在合适的时间使用可以大大降低我们的工作量,避免重复的造轮子,想看更多的函数介绍可以点击这里进行细致查看。

1.7 torchvision.utils

torchvision.utils 为我们提供了一些可视化的方法,可以帮助我们将若干张图片拼接在一起、可视化目标检测和分割的效果。具体方法可以点击这里进行查看。

总的来说,torchvision的出现帮助我们解决了常见的计算机视觉(Computer vision)中一些重复且耗时的工作,并在数据集(Dataset)的获取、数据增强、模型预训练(pretraining)等方面大大降低了我们的工作难度,可以让我们更加快速上手一些计算机视觉(Computer vision)任务。

2. PyTorchVideo简介

视频的深度学习(Deep learning)模型仍然存在许多缺点:

  • 计算资源耗费更多,并且没有高质量的 model zoo ,不能像图片一样进行迁移学习(Transfer learning)和论文复现。
  • 数据集(Dataset)处理比较麻烦,但是没有好的视频处理工具。
  • 随着多模态(modality)越来越流(stream)行,迫切需要一种工具来处理其他模态(modality)。
  • 部署优化等问题

PyTorchVideo 是一个专注于视频理解工作的深度学习(Deep learning)库。PytorchVideo 提供了加速视频理解研究所需的可重用、模块化和高效的组件。PyTorchVideo 是使用PyTorch开发的,支持不同的深度学习(Deep learning)视频组件,如视频模型、视频数据集(Dataset)和视频特定转换。

2.1 PyTorchVideo的主要部件和亮点

PytorchVideo 提供了加速视频理解研究所需的模块化和高效的API。它还支持不同的深度学习(Deep learning)视频组件,如视频模型、视频数据集(Dataset)和视频特定转换,最重要的是,PytorchVideo也提供了model zoo,使得人们可以使用各种先进的预训练(pretraining)视频模型及其评判基准(baseline)。PyTorchVideo主要亮点如下:

  • **基于 PyTorch:**使用 PyTorch 构建。使所有 PyTorch 生态系统组件的使用变得容易。
  • **Model Zoo:**PyTorchVideo提供了包含I3D、R(2+1)D、SlowFast、X3D、MViT等SOTA模型的高质量model zoo(目前还在快速扩充中,未来会有更多SOTA model),并且PyTorchVideo的model zoo调用与 PyTorch Hub 做了整合,大大简化模型调用,具体的一些调用方法可以参考下面的【使用 PyTorchVideo model zoo】部分。
  • 数据预处理和常见数据,PyTorchVideo支持Kinetics-400, Something-Something V2, Charades, Ava (v2.2), Epic Kitchen, HMDB51, UCF101, Domsev等主要数据集(Dataset)和相应的数据预处理,同时还支持randaug, augmix等数据增强trick。
  • 模块化设计:PyTorchVideo的设计类似于torchvision,也是提供许多模块方便用户调用修改,在PyTorchVideo中具体来说包括data, transforms, layer, model, accelerator等模块,方便用户进行调用和读取。
  • 支持多模态(modality):PyTorchVideo现在对多模态(modality)的支持包括了visual和audio,未来会支持更多模态(modality),为多模态(modality)模型的发展提供支持。
  • 移动端部署优化:PyTorchVideo支持针对移动端模型的部署优化(使用前述的PyTorchVideo/accelerator模块),模型经过PyTorchVideo优化了最高达7倍的提速,并实现了第一个能实时跑在手机端的X3D模型(实验中可以实时跑在2018年的三星Galaxy S8上,具体请见 Android Demo APP )。
# PyTorchVideo的安装
pip install pytorchvideo

2.2 Model zoo 和 benchmark

PyTorchVideo所提供的Model zoo和benchmark

  • Kinetics-400
archdepthpretrainframe length x sample ratetop 1top 5Flops (G) x viewsParams (M)Model
C2DR508×871.4689.6825.89 x 3 x 1024.33link
I3DR508×873.2790.7037.53 x 3 x 1028.04link
SlowR504×1672.4090.1827.55 x 3 x 1032.45link
SlowR508×874.5891.6354.52 x 3 x 1032.45link
SlowFastR504×1675.3491.8936.69 x 3 x 1034.48link
SlowFastR508×876.9492.6965.71 x 3 x 1034.57link
SlowFastR1018×877.9093.27127.20 x 3 x 1062.83link
SlowFastR10116×878.7093.61215.61 x 3 x 1053.77link
CSNR10132×277.0092.9075.62 x 3 x 1022.21link
R(2+1)DR5016×476.0192.2376.45 x 3 x 1028.11link
X3DXS4×1269.1288.630.91 x 3 x 103.79link
X3DS13×673.3391.272.96 x 3 x 103.79link
X3DM16×575.9492.726.72 x 3 x 103.79link
X3DL16×577.4493.3126.64 x 3 x 106.15link
MViTB16×478.8593.8570.80 x 1 x 536.61link
MViTB32×380.3094.69170.37 x 1 x 536.61link
  • Something-Something V2
archdepthpretrainframe length x sample ratetop 1top 5Flops (G) x viewsParams (M)Model
SlowR50Kinetics 4008×860.0485.1955.10 x 3 x 131.96link
SlowFastR50Kinetics 4008×861.6886.9266.60 x 3 x 134.04link
  • Charades
archdepthpretrainframe length x sample rateMAPFlops (G) x viewsParams (M)Model
SlowR50Kinetics 4008×834.7255.10 x 3 x 1031.96link
SlowFastR50Kinetics 4008×837.2466.60 x 3 x 1034.00link
  • AVA (V2.2)
archdepthpretrainframe length x sample rateMAPParams (M)Model
SlowR50Kinetics 4004×1619.531.78link
SlowFastR50Kinetics 4008×824.6733.82link

2.3 使用 PyTorchVideo model zoo

PyTorchVideo提供了三种使用方法,并且给每一种都配备了tutorial

  • TorchHub,这些模型都已经在TorchHub存在。我们可以根据实际情况来选择需不需要使用预训练(pretraining)模型。除此之外,官方也给出了TorchHub使用的 tutorial 。
  • PySlowFast,使用 PySlowFast workflow 去训练或测试PyTorchVideo models/datasets.
  • PyTorch Lightning建立一个工作流(stream)进行处理,点击查看官方 tutorial 。
  • 如果想看更多教程,可以点这里试试

总的来说,PyTorchVideo的使用与torchvision的使用方法类似,在有了前面的学习基础上,我们可以很快上手PyTorchVideo,具体的我们可以通过查看官方提供的文档和一些例程来了解使用方法:官方网址

3. torchtext简介

PyTorch官方用于自然语言处理(Natural language processing(NLP))(NLP)的工具包torchtext。

自然语言处理(Natural language processing(NLP))也是深度学习(Deep learning)的一大应用场景,近年来随着大规模预训练(pretraining)模型的应用,深度学习(Deep learning)在人机对话、机器翻译(Machine translation)等领域的取得了非常好的效果,也使得NLP相关的深度学习(Deep learning)模型获得了越来越多的关注。

由于NLP和CV在数据预处理中的不同,因此NLP的工具包torchtext和torchvision等CV相关工具包也有一些功能上的差异,如:

  • 数据集(Dataset)(dataset)定义方式不同
  • 数据预处理工具
  • 没有琳琅满目的model zoo

3.1 torchtext的主要组成部分

torchtext可以方便的对文本进行预处理,例如截断补长、构建词表等。torchtext主要包含了以下的主要组成部分:

  • 数据处理工具 torchtext.data.functional、torchtext.data.utils
  • 数据集(Dataset) torchtext.data.datasets
  • 词表工具 torchtext.vocab
  • 评测指标 torchtext.metrics
# torchtext的安装
pip install torchtext

3.2 构建数据集(Dataset)

  • Field及其使用

Field是torchtext中定义数据类型以及转换为张量(Tensor)的指令。torchtext认为一个样本是由多个字段(文本字段,标签字段)组成,不同的字段可能会有不同的处理方式,所以才会有Field抽象。定义Field对象是为了明确如何处理不同类型的数据,但具体的处理则是在Dataset中完成的。下面我们通过一个例子来简要说明一下Field的使用:

tokenize = lambda x: x.split()
TEXT = data.Field(sequential=True, tokenize=tokenize, lower=True, fix_length=200)
LABEL = data.Field(sequential=False, use_vocab=False)

在:

sequential设置数据是否是顺序表示的;

tokenize用于设置将字符串标记(token)为顺序实例的函数

lower设置是否将字符串全部转为小写;

fix_length设置此字段所有实例都将填充到一个固定的长度,方便后续处理;

use_vocab设置是否引入Vocab object,如果为False,则需要保证之后输入(input)field中的data都是numerical的

构建Field完成后就可以进一步构建dataset了:

from torchtext import data
def get_dataset(csv_data, text_field, label_field, test=False):
    fields = [("id", None), # we won't be needing the id, so we pass in None as the field
                 ("comment_text", text_field), ("toxic", label_field)]       
    examples = []

    if test:
        # 如果为测试集,则不加载label
        for text in tqdm(csv_data['comment_text']):
            examples.append(data.Example.fromlist([None, text, None], fields))
    else:
        for text, label in tqdm(zip(csv_data['comment_text'], csv_data['toxic'])):
            examples.append(data.Example.fromlist([None, text, label], fields))
    return examples, fields

这里使用数据csv_data中有”comment_text”和”toxic”两列,分别对应text和label。

train_data = pd.read_csv('train_toxic_comments.csv')
valid_data = pd.read_csv('valid_toxic_comments.csv')
test_data = pd.read_csv("test_toxic_comments.csv")
TEXT = data.Field(sequential=True, tokenize=tokenize, lower=True)
LABEL = data.Field(sequential=False, use_vocab=False)

# 得到构建Dataset所需的examples和fields
train_examples, train_fields = get_dataset(train_data, TEXT, LABEL)
valid_examples, valid_fields = get_dataset(valid_data, TEXT, LABEL)
test_examples, test_fields = get_dataset(test_data, TEXT, None, test=True)
# 构建Dataset数据集(Dataset)
train = data.Dataset(train_examples, train_fields)
valid = data.Dataset(valid_examples, valid_fields)
test = data.Dataset(test_examples, test_fields)

可以看到,定义Field对象完成后,通过get_dataset函数可以读入数据的文本和标签,将二者(examples)连同field一起送到torchtext.data.Dataset类中,即可完成数据集(Dataset)的构建。使用以下命令可以看下读入的数据情况:

# 检查keys是否正确
print(train[0].__dict__.keys())
print(test[0].__dict__.keys())
# 抽查内容是否正确
print(train[0].comment_text)
  • 词汇表(vocab)

在NLP中,将字符串形式的词语(word)转变为数字形式的向量表示(embedding)是非常重要的一步,被称为Word Embedding。这一步的基本思想是收集一个比较大的语料库(尽量与所做的任务相关),在语料库中使用word2vec之类的方法构建词语到向量(或数字)的映射关系,之后将这一映射关系应用于当前的任务,将句子中的词语转为向量表示。

在torchtext中可以使用Field自带的build_vocab函数完成词汇表构建。

TEXT.build_vocab(train)
  • 数据迭代器

其实就是torchtext中的DataLoader,看下代码就明白了:

from torchtext.data import Iterator, BucketIterator
# 若只针对训练集构造迭代器
# train_iter = data.BucketIterator(dataset=train, batch_size=8, shuffle=True, sort_within_batch=False, repeat=False)

# 同时对训练集和验证集(validation set)进行迭代器的构建
train_iter, val_iter = BucketIterator.splits(
        (train, valid), # 构建数据集(Dataset)所需的数据集(Dataset)
        batch_sizes=(8, 8),
        device=-1, # 如果使用gpu,此处将-1更换为GPU的编号
        sort_key=lambda x: len(x.comment_text), # the BucketIterator needs to be told what function it should use to group the data.
        sort_within_batch=False
)

test_iter = Iterator(test, batch_size=8, device=-1, sort=False, sort_within_batch=False)

torchtext支持只对一个dataset和同时对多个dataset构建数据迭代器。

  • 使用您自己的数据集(Dataset)

与torchvision类似,torchtext也提供若干常用的数据集(Dataset)方便快速进行算法测试。可以查看官方文档寻找想要使用的数据集(Dataset)。

3.3 评测指标(metric)

NLP中部分任务的评测不是通过准确率(Precision)等指标完成的,比如机器翻译(Machine translation)任务常用BLEU (bilingual evaluation understudy) score来评价预测文本和标签文本之间的相似程度。torchtext中可以直接调用torchtext.data.metrics.bleu_score来快速实现BLEU,下面是一个官方文档中的一个例子:

from torchtext.data.metrics import bleu_score
candidate_corpus = [['My', 'full', 'pytorch', 'test'], ['Another', 'Sentence']]
references_corpus = [[['My', 'full', 'pytorch', 'test'], ['Completely', 'Different']], [['No', 'Match']]]
bleu_score(candidate_corpus, references_corpus)
0.8408964276313782

3.4 其他

值得注意的是,由于NLP常用的网络结构比较固定,torchtext并不像torchvision那样提供一系列常用的网络结构。

模型主要通过torch.nn中的模块来实现,比如torch.nn.LSTM、torch.nn.RNN等。

对于文本研究而言,当下Transformer已经成为了绝对的主流(stream),因此PyTorch生态中的HuggingFace等工具包也受到了越来越广泛的关注。

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
乘风的头像乘风管理团队
上一篇 2022年3月25日 下午1:31
下一篇 2022年3月25日 下午1:54

相关推荐