站点图标 AI技术聚合

【论文研究】-一种新的用于约束多目标优化的两阶段二种群进化算法

【论文研究】-一种新的用于约束多目标优化的两阶段二种群进化算法

论文研究-一种用于约束多目标优化的新型两阶段二种群进化算法

A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization

如果觉得有用,欢迎大家一起讨论学习~

Abstract

Introduction

  1. 进化过程包括探索和开发阶段。当 auxPop 的收敛趋于平稳时,就会发生从探索到开发的阶段转换。
  2. 在探索阶段,mainPop 旨在寻找可行区域并保存可行的解决方案;而 auxPop 在不考虑任何约束的情况下探索整个搜索空间,并保留具有良好目标值的解决方案,无论可行性如何。在这个阶段,auxPop 是前向搜索的主力,引导 mainPop 穿过不可行区域。
  3. 在开发阶段,mainPop 继续从可行端向 PF 移动,同时将 auxPop 从不可行端引导向 PF。由于提出的牵引策略,auxPop 可以在 PF 附近快速找到有希望的不可行解(具有良好的目标值和低约束违规),从而帮助 mainPop 更好地收敛。
  4. 两个种群之间的合作不仅包括在后代生产过程中交换信息,而且还发生在一个种群提供信息以指导另一个种群的运动时。

2.Backgound

2.1 Literature Review

2.1.1 单种群算法

2.1.2 合作协同算法

2.2 Motivation

3.PROPOSED ALGORITHM: DD-CMOEA

3.1 Outline of DD-CMOEA

3.2 Exploration Stage

3.3 Exploitation Stage

3.4 Discussion

  1. PPS-MOEA/D 通过不断调整约束的松弛来控制无约束 PF 和真实 PF 之间的搜索,这取决于某些参数。在 DD-CMOEA 中,由于提出的牵引策略和 mainPop 提供的信息,auxPop 在开发阶段被迅速拉到真实 PF 附近的区域。
  2. PPS整个过程在基于分解的框架中执行,DD-CMOEA除了在开发阶段使用基于分解的框架的辅助种群外,均使用基于Pareto优势的框架。
    和CCMO进行比较
  1. CCMO 中两个种群的搜索目标在整个进化过程中保持不变。然而,DDCMOEA 中的 auxPop 首先旨在搜索不受约束的 PF(在探索阶段),然后旨在朝着真正的 PF 迈进(在开发阶段)。因此 DD-CMOEA 可以利用不同类型的信息不可行的解决方案。
  2. 在 CCMO 中,两个种群之间的合作只能通过共享后代来实现。 DD-CMOEA 不仅在两个种群之间共享后代,而且还从 mainPop 中获取信息来指导 auxPop 的进化。
  3. CCMO 没有额外的机制来提高多样性。在 DD-CMOEA 中,由于在牵引策略中使用权重向量,auxPop 中的解决方案可以分布在不同的子区域,有助于增强多样性

3.5 Time and Space Complexity of DD-CMOEA

4.EXPERIMENTAL STUDY

4.1 Benchmark Problems and Parameter Settings

4.2 Investigation into the Search Behavior of DD-CMOEA

4.2.1 Investigation into the Effect of Using Dual Populations

  1. 在开发阶段,mainPop遵循可行性规律,继续向真正的PF演进。auxPop也越来越接近真正的PF,如图8(1)所示,auxPop在真正PF上比mainPop覆盖了更广的区域。具体来说,auxPop分布在可行区域和不可行区域。auxPop中的不可行的解决方案位于真正的PF周围,具有良好的客观值和低约束违反。图8(j) – (l)表明,这些非可行解可以补充mainPop,找到所有的真PF。

4.2.2 Investigation into the Effect of Using Dual Stages

4.2.3 Performance Comparison on Benchmark Problems

  1. MW测试套件:表二显示了IGD的平均值和方差在算法随机执行31次的结果。如表二所示,DD-CMOEA在13、14、13、5个问题上显著优于C-NSGA-II、PPSMOEA/S、ToR-NSGA-II和CCMO。与C-TAEA相比,DDCMOEA在10个问题和1个问题上分别有较好的和可比较的结果,而C-TAEA在其余3个问题上有较好的结果。

  1. Discussion: 图9总结了六种算法对所有问题(在三个测试套件中)的平均排名,其中使用Friedman测试来检测它们的差异。排序越低,算法的性能越好。注意,wilcoxon秩和检验用于一次只比较两种算法,而Friedman检验用于根据总体性能对所有算法进行排序。在图9中,DD-CMOEA和CCMO分别表现最好和次之。在图9中,这两种算法明显优于其他四种算法。在表四中,我们显示了每个测试套件中每个算法在测试问题上运行的平均计算时间。虽然DD-CMOEA比C-NSGA-II、ToR-NSGA-II和PPSMOEA/D需要更多的计算时间,但比CCMO(图9中排名第二)和C-TAEA要快。从图9和表4可以看出,与目前五种最先进的算法相比,本文提出的DD-CMOEA算法是一种很有前景的算法。

4.2.4 Sensitivity Analysis of Parameter

6.Conclution

7. REFERENCES

[1] K。Deb, Multi-Objective Optimization Using Evolutionary Algorithms。Chichester, U.K.: John Wiley & Sons, 2001.

[2] J. Wang, W. Ren, Z. Zhang, H. Huang, and Y . Zhou, “A hybrid multiobjective memetic algorithm for multiobjective periodic vehicle routing problem with time windows,” IEEE Trans. Syst., Man, Cybern., Syst., 2018.

[3] R. Tanabe and A. Oyama, “A note on constrained multi-objective optimization benchmark problems,” in Proc. IEEE Congr . Evol. Comput. (CEC), 2017, pp. 1127–1134.

[4] Z. Ma and Y . Wang, “Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 972–986, 2019.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.

[6] Z. Fan, W. Li, X. Cai, H. Huang, Y . Fang, Y . Y ou, J. Mo, C. Wei, and E. Goodman, “An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions,” Soft Comput., pp. 1–20, 2017.

[7] K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 303–315, 2018.

[8] M. Elarbi, S. Bechikh, and L. B. Said, “On the importance of isolated infeasible solutions in the many-objective constrained NSGA-III,” Knowledge-Based Systems, 2018.

[9] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Push and pull search for solving constrained multiobjective optimization problems,” Swarm Evol. Comput., vol. 44, pp. 665–679, 2019.

[10] Z. Ma, Y . Wang, and W. Song, “A new fitness function with two rankings for evolutionary constrained multiobjective optimization,” IEEE Trans. Syst., Man, Cybern., Syst., 2019.

[11] Y . Tian, T. Zhang, J. Xiao, X. Zhang, and Y . Jin, “A coevolutionary framework for constrained multi-objective optimization problems,” IEEE Trans. Evol. Comput., 2020.

[12] C. M. Fonseca and P . J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms – Part I: A unified formulation,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 28, no. 1, pp. 26–37, 1998.

[13] H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602–622, 2013.

[14] Y . G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling in multiobjective evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 514–525, 2009.

[15] M. A. Jan and R. A. Khanum, “A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D,” Appl. Soft Comput., vol. 13, no. 1, pp. 128–148, 2013.

[16] T. Takahama and S. Sakai, “Efficient constrained optimization by the ε constrained adaptive differential evolution,” in Proc. IEEE Congr . Evol. Comput. (CEC), 2010, pp. 1–8.

[17] Y . Wang and Z. Cai, “Combining multiobjective optimization with differential evolution to solve constrained optimization problems,” IEEE Trans. Evol. Comput., vol. 16, no. 1, pp. 117–134, 2012.

[18] E. Mezura-Montes and C. A. C. Coello, “Constraint-handling in natureinspired numerical optimization: past, present and future,” Swarm Evol. Comput., vol. 1, no. 4, pp. 173–194, 2011.

[19] W. Ning, B. Guo, Y . Yan, X. Wu, J. Wu, and D. Zhao, “Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm,” Eng. Optim., vol. 49, no. 10, pp. 1645–1664, 2017.

[20] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007.

[21] Z. Liu and Y . Wang, “Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 870–884, 2019.

[22] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary manyobjective optimization algorithm based on dominance and decomposition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716, 2015.

[23] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 210– 224, 2011.

[24] J. Wang, G. Liang, and J. Zhang, “Cooperative differential evolution framework for constrained multiobjective optimization,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2060–2072, 2018.

[25] J. Wang, W. Zhang, and J. Zhang, “Cooperative differential evolution with multiple populations for multiobjective optimization,” IEEE Trans. Cybern., vol. 46, no. 12, pp. 2848–2861, 2015.

[26] H.-L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455, 2013.

[27] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.

[28] K. Deb, R. B. Agrawal et al., “Simulated binary crossover for continuous search space,” Complex Syst., vol. 9, no. 2, pp. 115–148, 1995.

[29] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Comput. Sci. Inform., vol. 26, pp. 30–45, 1996.

[30] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for multi-objective evolutionary optimization,” in Proc. Int. Conf. Evol. Multi Criterion Optim. (EMO). Springer, 2001, pp. 284–298.

[31] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: A practical approach to global optimization. Springer Science & Business Media, 2006.

[32] Y . Tian, R. Cheng, X. Zhang, and Y . Jin, “PlatEMO: A MA TLAB platform for evolutionary multi-objective optimization,” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, 2017.

[33] P . A. Bosman and D. Thierens, “The balance between proximity and diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 174–188, 2003.

[34] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach,” IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, 1999.

[35] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods. John Wiley & Sons, 2013, vol. 751.

[36] R. Azzouz, S. Bechikh, and L. Ben Said, “Multi-objective optimization with dynamic constraints and objectives: New challenges for evolutionary algorithms,” in Proc. Genetic Evol. Comput. Conf. (GECCO), 2015, pp. 615–622.

[37] M. Ming, R. Wang, and T. Zhang, “Evolutionary many-constraint optimization: An exploratory analysis,” in Proc. Int. Conf. Evol. Multi Criterion Optim. (EMO). Springer, 2019, pp. 165–176.

[38] K. H. Rahi, H. K. Singh, and T. Ray, “Partial evaluation strategies for expensive evolutionary constrained optimization,” IEEE Trans. Evol. Comput., 2021.

文章出处登录后可见!

已经登录?立即刷新
退出移动版