【Pytorch神经网络实战案例 】24 基于迁移学习识别多种鸟类(CUB-200数据集)

【Pytorch神经网络实战案例 】24 基于迁移学习识别多种鸟类(CUB-200数据集)

1 迁移学习

在实际开发中,迁移学习常用于将预训练模型的特征提取能力迁移到自己的模型中。

1.1 迁移学习定义

迁移学习是指简单地修改在一项任务上训练的模型,然后用另一项任务的数据继续训练,使其能够完成新的任务。

1.1.1 迁移学习举例

在ImageNet数据集上训练过的ResNet模型,其任务是进行图片分类,可以对其进行修改使用在目标定位任务上。

1.2 迁移学习的分类

迁移学习是机器学习的一个分支。根据学习方法可分为基于样本的迁移、基于特征的迁移、基于模型的迁移和基于关系的迁移。

1.2 迁移学习的目的

它节省了手动标记样本的时间,并允许模型从现有的标记数据字段迁移到未标记的数据字段,从而训练出适合该字段的模型。

简而言之,就是利用已有的相关知识来协助尽快学习新知识。

1.3 迁移学习的优势

  1. 对于数据集本身很小(几千张图片)的情况,从零开始训练上千万参数的大型神经网络是不现实的,因为模型需要越大,数据量越大,而且无法实现过拟合。避免。如果还想使用大型神经网络的超强特征提取能力,就只能依靠微调已经训练好的模型了。
  2. 可以降低培训成本。如果使用推导特征向量的方法进行迁移学习,后期的训练成本非常低。
  3. 前人用大量精力训练出来的模型,大概率会比你从零开始训练出来的模型更厉害,不用重复造轮子。
  4. 迁移学习将训练模型用于其他图像分类任务,通常被称为对现有模型的微调。

1.4 迁移学习与微调的关系

Fine-tuning 更常用来描述迁移学习后期的微调,微调应该是迁移学习的一个组成部分,即微调是一种技能。

2 CUB-200数据集简介

2.1 细粒度

细粒度分类的简单理解:当一张图片被识别为狗时,你还需要知道狗的品种;这里,粗粒度分类用于识别狗,细粒度分类用于识别狗的类型。

细粒度分类的关键:提取判别特征(类似于人眼对狗品种的分类,提取狗最具特征的区域进行品种分类,类比卷积神经网络,卷积网络提取自己的感受。感兴趣的领域)是提升业绩的关键

2.2 CUB-200数据集组成

CUB-200数据集由加州理工学院在2010年提出的细粒度数据集,也是目前细粒度分类识别研究的基准图像数据集,共有11788张鸟类图像,包含200类鸟类子类,其中训练数据集有5994张图像,测试集有5794张图像,每张图像均提供图像类标记信息。

【Pytorch神经网络实战案例 】24 基于迁移学习识别多种鸟类(CUB-200数据集)

3 本节案例

3.1 案例简介

使用迁移学习微调预训练模型,学习鸟类数据集以识别各种鸟类。

3.2 代码实现:load_data函数加载图片名称与标签的加载—-Transfer_bird.py(第1部分)

import glob
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt #plt 用于显示图片
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import Dataset,DataLoader
import torchvision
import torchvision.models as model
from torchvision.transforms import ToPILImage
import torchvision.transforms as transforms
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

# 1.1 实现load_data函数加载图片名称与标签的加载,并使用torch.utils.data接口将其封装成程序可用的数据集类OwnDataset。
def load_dir(directory,labstart=0): # 获取所有directory中的所有图与标签
    # 返回path指定的文件夹所包含的文件或文件名的名称列表
    strlabels = os.listdir(directory)
    # 对标签进行排序,以便训练和验证按照相同的顺序进行:在不同的操作系统中,加载文件夹的顺序可能不同。目录不同的情况会导致在不同的操作系统中,模型的标签出现串位的现象。所以需要对文件夹进行排序,保证其顺序的一致性。
    strlabels.sort()
    # 创建文件标签列表
    file_labels = []
    for i,label in enumerate(strlabels):
        print(label)
        jpg_names = glob.glob(os.path.join(directory,label,"*.jpg"))
        print(jpg_names)
        # 加入列表
        file_labels.extend(zip(jpg_names, [i + labstart] * len(jpg_names)))
    return file_labels,strlabels

def load_data(dataset_path): # 定义函数load_data函数完成对数据集中图片文件名称和标签的加载。
    # 该函数可以实现两层文件夹的嵌套结构。其中,外层结构使用load_data函数进行遍历,内层结构使用load_dir函进行遍历。
    sub_dir = sorted(os.listdir(dataset_path)) # 跳过子文件夹:在不同的操作系统中,加载文件夹的顺序可能不同。目录不同的情况会导致在不同的操作系统中,模型的标签出现串位的现象。所以需要对文件夹进行排序,保证其顺序的一致性。
    start = 1 # 第0类是none
    tfile_lables,tstrlabels = [],['none'] # 在制作标签时,人为地在前面添加了一个序号为0的none类。这是一个训练图文类模型的技巧,为了区分模型输出值是0和预测值是0这两种情况。
    for i in sub_dir:
        directory = os.path.join(dataset_path,i)
        if os.path.isdir(directory) == False: # 只处理文件夹中的数据
            print(directory)
            continue
        file_labels,strlables = load_dir(directory,labstart=start)
        tfile_lables.extend(file_labels)
        tstrlabels.extend(strlables)
        start = len(strlables)
    # 将数据路径与标签解压缩,把数据路径和标签解压缩出来
    filenames,labels = zip(*tfile_lables)
    return filenames, labels, tstrlabels

3.3 代码实现:自定义数据集类OwnDataset—-Transfer_bird.py(第2部分)

# 1.2 实现自定义数据集OwnDataset
def default_loader(path) : # 定义函数加载图片
    return Image.open(path).convert('RGB')

class OwnDataset(Dataset): # 复用性较强,可根据自己的数据集略加修改使用
    # 在PyTorch中,提供了一个torch.utis.data接口,可以用来对数据集进行封装。在实现时,只需要继承torch.utis.data.Dataset类,并重载其__gettem__方法。
    # 在使用时,框架会向__gettem__方法传入索引index,在__gettem__方法内部根据指定index加载数据,并返回。
    def __init__(self,img_dir,labels,indexlist=None,transform=transforms.ToTensor(),loader=default_loader,cache=True): # 初始化
        self.labels = labels # 存放标签
        self.img_dir = img_dir # 样本图片文件名
        self.transform = transform # 预处理方法
        self.loader = loader # 加载方法
        self.cache = cache # 缓存标志
        if indexlist is None: # 要加载的数据序列
            self.indexlist = list(range(len(self.img_dir)))
        else:
            self.indexlist = indexlist
        self.data = [None] * len(self.indexlist) # 存放样本图片

    def __getitem__(self, idx): # 加载指定索引数据
        if self.data[idx] is None: # 第一次加载
            data = self.loader(self.img_dir[self.indexlist[idx]])
            if self.transform:
                data = self.transform(data)
        else:
            data = self.data[idx]
        if self.cache: # 保存到缓存里
            self.data[idx] = data
        return data,self.labels[self.indexlist[idx]]

    def __len__(self): # 计算数据集长度
        return len(self.indexlist)

3.4 代码实战:测试数据集—-Transfer_bird.py(第3部分)

# 1.3 测试数据集:在完成数据集的制作之后,编写代码对其进行测试。
data_transform = { #定义数据的预处理方法
    'train':transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
    ]),
    'val':transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
    ]),
}
def Reduction_img(tensor,mean,std): #还原图片,实现了图片归一化的逆操作,显示数据集中的原始图片。
    dtype = tensor.dtype
    mean = torch.as_tensor(mean,dtype=dtype,device=tensor.device)
    std = torch.as_tensor(std,dtype=dtype,device=tensor.device)
    tensor.mul_(std[:,None,None]).add_(mean[:,None,None]) # 还原操作

dataset_path = r'./data/cub200/' # 加载数据集路径
filenames,labels,classes = load_data(dataset_path) # 调用load_data函数对数据集中图片文件名称和标签进行加载,其返回对象classes中包含全部的类名。
# 打乱数据顺序
# 110-115行对数据文件列表的序号进行乱序划分,分为测试数据集和训练数集两个索引列表。该索引列表会传入OwnDataset类做成指定的数据集。
np.random.seed(0)
label_shuffle_index = np.random.permutation(len(labels))
label_train_num = (len(labels)//10) * 8 # 划分训练数据集和测试数据集
train_list = label_shuffle_index[0:label_train_num]
test_list = label_shuffle_index[label_train_num:] # 没带:

train_dataset = OwnDataset(filenames,labels,train_list,data_transform['train'])# 实例化训练数据集
val_dataset = OwnDataset(filenames,labels,test_list,data_transform['val']) # 实例化测试数据集
# 实例化批次数据集:OwnDataset类所定义的数据集,其使用方法与PyTorch中的内置数据集的使用方法完全一致,配合DataLoader接口即可生成可以进行训练或测试的批次数据。具体代码如下。
train_loader = DataLoader(dataset=train_dataset,batch_size=32,shuffle=True)
val_loader = DataLoader(dataset=val_dataset,batch_size=32,shuffle=True)

sample = iter(train_loader) # 获取一批次数据,进行测试
images,labels = sample.next()
print("样本形状",np.shape(images))
print("标签个数",len(classes))
mulimgs = torchvision.utils.make_grid(images[:10],nrow=10) # 拼接多张图片
Reduction_img(mulimgs,[0.485,0.456,0.406],[0.229,0.224,0.225])
_img = ToPILImage()(mulimgs) # 将张量转化为图片
plt.axis('off')
plt.imshow(_img) # 显示
plt.show()
print(','.join('%5s' % classes[labels[j]] for j in range(len(images[:10]))))

输出:

样本形状 torch.Size([32, 3, 224, 224])
标签个数 6

输出数据集中的10个图片

【Pytorch神经网络实战案例 】24 基于迁移学习识别多种鸟类(CUB-200数据集)

3.5 代码实战:获取并改造ResNet模型—-Transfer_bird.py(第4部分)

# 1.4 获取并改造ResNet模型:获取ResNet模型,并加载预训练模型的权重。将其最后一层(输出层)去掉,换成一个全新的全连接层,该全连接层的输出节点数与本例分类数相同。
# 指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# get_ResNet函数,获取预训练模型,可指定pretrained=True来实现自动下载预训练模型,也可指定loadfile来从本地路径加载预训练模型。
def get_ResNet(classes,pretrained=True,loadfile=None):
    ResNet = model.resnet101(pretrained) # 自动下载官方的预训练模型
    if loadfile != None:
        ResNet.load_state_dict(torch.load(loadfile)) # 加载本地模型
    # 将所有的参数层进行冻结:设置模型仅最后一层可以进行训练,使模型只针对最后一层进行微调。
    for param in ResNet.parameters():
        param.requires_grad = False
    # 输出全连接层的信息
    print(ResNet.fc)
    x = ResNet.fc.in_features # 获取全连接层的输入
    ResNet.fc = nn.Linear(x,len(classes)) # 定义一个新的全连接层
    print(ResNet.fc) # 最后输出新的模型
    return ResNet
ResNet = get_ResNet(classes) # 实例化模型
ResNet.to(device=device)

3.6 代码实战:定义损失函数、训练函数及测试函数,对模型的最后一层进行微调—-Transfer_bird.py(第5部分)

# 1.5 定义损失函数、训练函数及测试函数,对模型的最后一层进行微调。
criterion = nn.CrossEntropyLoss()
# 指定新加的全连接层的学习率
optimizer = torch.optim.Adam([{'params':ResNet.fc.parameters()}],lr=0.01)
def train(model,device,train_loader,epoch,optimizer): # 定义训练函数
    model.train()
    allloss = []
    for batch_idx,data in enumerate(train_loader):
        x,y = data
        x = x.to(device)
        y = y.to(device)
        optimizer.zero_grad()
        y_hat = model(x)
        loss = criterion(y_hat,y)
        loss.backward()
        allloss.append(loss.item())
        optimizer.step()
    print('Train Epoch:{}\t Loss:{:.6f}'.format(epoch,np.mean(allloss))) # 输出训练结果

def test(model,device,val_loader): # 定义测试函数
    model.eval()
    test_loss = []
    correct = []
    with torch.no_grad(): # 使模型在运行时不进行梯度跟踪,可以减少模型运行时对内存的占用。
        for i,data in enumerate(val_loader):
            x, y = data
            x = x.to(device)
            y = y.to(device)
            y_hat = model(x)
            test_loss.append(criterion(y_hat,y).item()) # 收集损失函数
            pred = y_hat.max(1,keepdim=True)[1] # 获取预测结果
            correct.append(pred.eq(y.view_as(pred)).sum().item()/pred.shape[0]) # 收集精确度
    print('\nTest:Average loss:{:,.4f},Accuracy:({:,.0f}%)\n'.format(np.mean(test_loss),np.mean(correct)*100)) # 输出测试结果

# 迁移学习的两个步骤如下
if __name__ == '__main__':
# 迁移学习步骤①:固定预训练模型的特征提取部分,只对最后一层进行训练,使其快速收敛。
    firstmodepth = './data/cub200/firstmodepth_1.pth' # 定义模型文件的地址
    if os.path.exists(firstmodepth) == False:
        print("—————————固定预训练模型的特征提取部分,只对最后一层进行训练,使其快速收敛—————————")
        for epoch in range(1,2): # 迭代两次
            train(ResNet,device,train_loader,epoch,optimizer)
            test(ResNet,device,val_loader)
        # 保存模型
        torch.save(ResNet.state_dict(),firstmodepth)

3.7 代码实战:使用退化学习率对模型进行全局微调—-Transfer_bird.py(第6部分)

# 1.6 使用退化学习率对模型进行全局微调
#迁移学习步骤②:使用较小的学习率,对全部模型进行训练,并对每层的权重进行细微的调节,即将模型的每层权重都设为可训练,并定义带有退化学习率的优化器。(1.6部分)
    secondmodepth = './data/cub200/firstmodepth_2.pth'
    optimizer2 = optim.SGD(ResNet.parameters(),lr=0.001,momentum=0.9) # 第198行代码定义带有退化学习率的SGD优化器。该优化器常用来对模型进行手动微调。有实验表明,使用经过手动调节的SGD优化器,在训练模型的后期效果优于Adam优化器。
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer2,step_size=2,gamma=0.9) # 由于退化学习率会在训练过程中不断地变小,为了防止学习率过小,最终无法进行权重需要对其设置最小值。当学习率低于该值时,停止对退化学习率的操作。
    for param in ResNet.parameters(): # 所有参数设计为可训练
        param.requires_grad = True
    if os.path.exists(secondmodepth):
        ResNet.load_state_dict(torch.load(secondmodepth)) # 加载本地模型
    else:
        ResNet.load_state_dict(torch.load(firstmodepth)) # 加载本地模型
    print("____使用较小的学习率,对全部模型进行训练,定义带有退化学习率的优化器______")
    for epoch in range(1,100):
        train(ResNet,device,train_loader,epoch,optimizer2)
        if optimizer2.state_dict()['param_groups'][0]['lr'] > 0.00001:
            exp_lr_scheduler.step()
            print("___lr:",optimizer2.state_dict()['param_groups'][0]['lr'])
        test(ResNet,device,val_loader)
    # 保存模型
    torch.save(ResNet.state_dict(),secondmodepth)

4 代码总览Transfer_bird.py

import glob
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt #plt 用于显示图片
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import Dataset,DataLoader
import torchvision
import torchvision.models as model
from torchvision.transforms import ToPILImage
import torchvision.transforms as transforms
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

# 1.1 实现load_data函数加载图片名称与标签的加载,并使用torch.utils.data接口将其封装成程序可用的数据集类OwnDataset。
def load_dir(directory,labstart=0): # 获取所有directory中的所有图与标签
    # 返回path指定的文件夹所包含的文件或文件名的名称列表
    strlabels = os.listdir(directory)
    # 对标签进行排序,以便训练和验证按照相同的顺序进行:在不同的操作系统中,加载文件夹的顺序可能不同。目录不同的情况会导致在不同的操作系统中,模型的标签出现串位的现象。所以需要对文件夹进行排序,保证其顺序的一致性。
    strlabels.sort()
    # 创建文件标签列表
    file_labels = []
    for i,label in enumerate(strlabels):
        print(label)
        jpg_names = glob.glob(os.path.join(directory,label,"*.jpg"))
        print(jpg_names)
        # 加入列表
        file_labels.extend(zip(jpg_names, [i + labstart] * len(jpg_names)))
    return file_labels,strlabels

def load_data(dataset_path): # 定义函数load_data函数完成对数据集中图片文件名称和标签的加载。
    # 该函数可以实现两层文件夹的嵌套结构。其中,外层结构使用load_data函数进行遍历,内层结构使用load_dir函进行遍历。
    sub_dir = sorted(os.listdir(dataset_path)) # 跳过子文件夹:在不同的操作系统中,加载文件夹的顺序可能不同。目录不同的情况会导致在不同的操作系统中,模型的标签出现串位的现象。所以需要对文件夹进行排序,保证其顺序的一致性。
    start = 1 # 第0类是none
    tfile_lables,tstrlabels = [],['none'] # 在制作标签时,人为地在前面添加了一个序号为0的none类。这是一个训练图文类模型的技巧,为了区分模型输出值是0和预测值是0这两种情况。
    for i in sub_dir:
        directory = os.path.join(dataset_path,i)
        if os.path.isdir(directory) == False: # 只处理文件夹中的数据
            print(directory)
            continue
        file_labels,strlables = load_dir(directory,labstart=start)
        tfile_lables.extend(file_labels)
        tstrlabels.extend(strlables)
        start = len(strlables)
    # 将数据路径与标签解压缩,把数据路径和标签解压缩出来
    filenames,labels = zip(*tfile_lables)
    return filenames, labels, tstrlabels

# 1.2 实现自定义数据集OwnDataset
def default_loader(path) : # 定义函数加载图片
    return Image.open(path).convert('RGB')

class OwnDataset(Dataset): # 复用性较强,可根据自己的数据集略加修改使用
    # 在PyTorch中,提供了一个torch.utis.data接口,可以用来对数据集进行封装。在实现时,只需要继承torch.utis.data.Dataset类,并重载其__gettem__方法。
    # 在使用时,框架会向__gettem__方法传入索引index,在__gettem__方法内部根据指定index加载数据,并返回。
    def __init__(self,img_dir,labels,indexlist=None,transform=transforms.ToTensor(),loader=default_loader,cache=True): # 初始化
        self.labels = labels # 存放标签
        self.img_dir = img_dir # 样本图片文件名
        self.transform = transform # 预处理方法
        self.loader = loader # 加载方法
        self.cache = cache # 缓存标志
        if indexlist is None: # 要加载的数据序列
            self.indexlist = list(range(len(self.img_dir)))
        else:
            self.indexlist = indexlist
        self.data = [None] * len(self.indexlist) # 存放样本图片

    def __getitem__(self, idx): # 加载指定索引数据
        if self.data[idx] is None: # 第一次加载
            data = self.loader(self.img_dir[self.indexlist[idx]])
            if self.transform:
                data = self.transform(data)
        else:
            data = self.data[idx]
        if self.cache: # 保存到缓存里
            self.data[idx] = data
        return data,self.labels[self.indexlist[idx]]

    def __len__(self): # 计算数据集长度
        return len(self.indexlist)

# 1.3 测试数据集:在完成数据集的制作之后,编写代码对其进行测试。
data_transform = { #定义数据的预处理方法
    'train':transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
    ]),
    'val':transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
    ]),
}
def Reduction_img(tensor,mean,std): #还原图片,实现了图片归一化的逆操作,显示数据集中的原始图片。
    dtype = tensor.dtype
    mean = torch.as_tensor(mean,dtype=dtype,device=tensor.device)
    std = torch.as_tensor(std,dtype=dtype,device=tensor.device)
    tensor.mul_(std[:,None,None]).add_(mean[:,None,None]) # 还原操作

dataset_path = r'./data/cub200/' # 加载数据集路径
filenames,labels,classes = load_data(dataset_path) # 调用load_data函数对数据集中图片文件名称和标签进行加载,其返回对象classes中包含全部的类名。
# 打乱数据顺序
# 110-115行对数据文件列表的序号进行乱序划分,分为测试数据集和训练数集两个索引列表。该索引列表会传入OwnDataset类做成指定的数据集。
np.random.seed(0)
label_shuffle_index = np.random.permutation(len(labels))
label_train_num = (len(labels)//10) * 8 # 划分训练数据集和测试数据集
train_list = label_shuffle_index[0:label_train_num]
test_list = label_shuffle_index[label_train_num:] # 没带:

train_dataset = OwnDataset(filenames,labels,train_list,data_transform['train'])# 实例化训练数据集
val_dataset = OwnDataset(filenames,labels,test_list,data_transform['val']) # 实例化测试数据集
# 实例化批次数据集:OwnDataset类所定义的数据集,其使用方法与PyTorch中的内置数据集的使用方法完全一致,配合DataLoader接口即可生成可以进行训练或测试的批次数据。具体代码如下。
train_loader = DataLoader(dataset=train_dataset,batch_size=32,shuffle=True)
val_loader = DataLoader(dataset=val_dataset,batch_size=32,shuffle=True)

sample = iter(train_loader) # 获取一批次数据,进行测试
images,labels = sample.next()
print("样本形状",np.shape(images))
print("标签个数",len(classes))
mulimgs = torchvision.utils.make_grid(images[:10],nrow=10) # 拼接多张图片
Reduction_img(mulimgs,[0.485,0.456,0.406],[0.229,0.224,0.225])
_img = ToPILImage()(mulimgs) # 将张量转化为图片
plt.axis('off')
plt.imshow(_img) # 显示
plt.show()
print(','.join('%5s' % classes[labels[j]] for j in range(len(images[:10]))))

# 1.4 获取并改造ResNet模型:获取ResNet模型,并加载预训练模型的权重。将其最后一层(输出层)去掉,换成一个全新的全连接层,该全连接层的输出节点数与本例分类数相同。
# 指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# get_ResNet函数,获取预训练模型,可指定pretrained=True来实现自动下载预训练模型,也可指定loadfile来从本地路径加载预训练模型。
def get_ResNet(classes,pretrained=True,loadfile=None):
    ResNet = model.resnet101(pretrained) # 自动下载官方的预训练模型
    if loadfile != None:
        ResNet.load_state_dict(torch.load(loadfile)) # 加载本地模型
    # 将所有的参数层进行冻结:设置模型仅最后一层可以进行训练,使模型只针对最后一层进行微调。
    for param in ResNet.parameters():
        param.requires_grad = False
    # 输出全连接层的信息
    print(ResNet.fc)
    x = ResNet.fc.in_features # 获取全连接层的输入
    ResNet.fc = nn.Linear(x,len(classes)) # 定义一个新的全连接层
    print(ResNet.fc) # 最后输出新的模型
    return ResNet
ResNet = get_ResNet(classes) # 实例化模型
ResNet.to(device=device)

# 1.5 定义损失函数、训练函数及测试函数,对模型的最后一层进行微调。
criterion = nn.CrossEntropyLoss()
# 指定新加的全连接层的学习率
optimizer = torch.optim.Adam([{'params':ResNet.fc.parameters()}],lr=0.01)
def train(model,device,train_loader,epoch,optimizer): # 定义训练函数
    model.train()
    allloss = []
    for batch_idx,data in enumerate(train_loader):
        x,y = data
        x = x.to(device)
        y = y.to(device)
        optimizer.zero_grad()
        y_hat = model(x)
        loss = criterion(y_hat,y)
        loss.backward()
        allloss.append(loss.item())
        optimizer.step()
    print('Train Epoch:{}\t Loss:{:.6f}'.format(epoch,np.mean(allloss))) # 输出训练结果

def test(model,device,val_loader): # 定义测试函数
    model.eval()
    test_loss = []
    correct = []
    with torch.no_grad(): # 使模型在运行时不进行梯度跟踪,可以减少模型运行时对内存的占用。
        for i,data in enumerate(val_loader):
            x, y = data
            x = x.to(device)
            y = y.to(device)
            y_hat = model(x)
            test_loss.append(criterion(y_hat,y).item()) # 收集损失函数
            pred = y_hat.max(1,keepdim=True)[1] # 获取预测结果
            correct.append(pred.eq(y.view_as(pred)).sum().item()/pred.shape[0]) # 收集精确度
    print('\nTest:Average loss:{:,.4f},Accuracy:({:,.0f}%)\n'.format(np.mean(test_loss),np.mean(correct)*100)) # 输出测试结果

# 迁移学习的两个步骤如下
if __name__ == '__main__':
# 迁移学习步骤①:固定预训练模型的特征提取部分,只对最后一层进行训练,使其快速收敛。
    firstmodepth = './data/cub200/firstmodepth_1.pth' # 定义模型文件的地址
    if os.path.exists(firstmodepth) == False:
        print("—————————固定预训练模型的特征提取部分,只对最后一层进行训练,使其快速收敛—————————")
        for epoch in range(1,2): # 迭代两次
            train(ResNet,device,train_loader,epoch,optimizer)
            test(ResNet,device,val_loader)
        # 保存模型
        torch.save(ResNet.state_dict(),firstmodepth)
# 1.6 使用退化学习率对模型进行全局微调
#迁移学习步骤②:使用较小的学习率,对全部模型进行训练,并对每层的权重进行细微的调节,即将模型的每层权重都设为可训练,并定义带有退化学习率的优化器。(1.6部分)
    secondmodepth = './data/cub200/firstmodepth_2.pth'
    optimizer2 = optim.SGD(ResNet.parameters(),lr=0.001,momentum=0.9) # 第198行代码定义带有退化学习率的SGD优化器。该优化器常用来对模型进行手动微调。有实验表明,使用经过手动调节的SGD优化器,在训练模型的后期效果优于Adam优化器。
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer2,step_size=2,gamma=0.9) # 由于退化学习率会在训练过程中不断地变小,为了防止学习率过小,最终无法进行权重需要对其设置最小值。当学习率低于该值时,停止对退化学习率的操作。
    for param in ResNet.parameters(): # 所有参数设计为可训练
        param.requires_grad = True
    if os.path.exists(secondmodepth):
        ResNet.load_state_dict(torch.load(secondmodepth)) # 加载本地模型
    else:
        ResNet.load_state_dict(torch.load(firstmodepth)) # 加载本地模型
    print("____使用较小的学习率,对全部模型进行训练,定义带有退化学习率的优化器______")
    for epoch in range(1,100):
        train(ResNet,device,train_loader,epoch,optimizer2)
        if optimizer2.state_dict()['param_groups'][0]['lr'] > 0.00001:
            exp_lr_scheduler.step()
            print("___lr:",optimizer2.state_dict()['param_groups'][0]['lr'])
        test(ResNet,device,val_loader)
    # 保存模型
    torch.save(ResNet.state_dict(),secondmodepth)

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(1)
心中带点小风骚的头像心中带点小风骚普通用户
上一篇 2022年4月12日 上午10:07
下一篇 2022年4月12日 上午10:24

相关推荐