目标跟踪中的卡尔曼滤波kalman_filter

本文主要是讲目标跟踪sort中的卡尔曼滤波上述匈牙利匹配结果的基础上,怎样实现如下过程:
1、怎样predict ?
2、怎样update ?
3、track.hit_streak怎样实现连击 >= min_hits时,赋予该track一个id ?
4、track.time_since_update > max_age时,删除该轨迹track的实现方式?
具体的实现过程讲解:
python使用卡尔曼滤波的几个包:
1、从opencv导入
2、从filterpy导入
3、自己写一个 class Kalman()
代码中用到的卡尔曼滤波器类from filterpy.kalman import KalmanFilter
查看代码详细注释,应该能搞懂。

# -*- coding: utf-8 -*-
"""
Time    : 2022/5/13 11:22
Author  : cong
"""
from filterpy.kalman import KalmanFilter
import numpy as np


def convert_bbox_to_z(bbox):
    """
  Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
    [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
    the aspect ratio
  """
    w = bbox[2] - bbox[0]
    h = bbox[3] - bbox[1]
    x = bbox[0] + w / 2.
    y = bbox[1] + h / 2.
    s = w * h  # scale is just area
    r = w / float(h)
    return np.array([x, y, s, r]).reshape((4, 1))


def convert_x_to_bbox(x, score=None):
    """
  Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
    [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
  """
    w = np.sqrt(x[2] * x[3])
    h = x[2] / w
    if score is None:
        return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
    else:
        return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))


class KalmanBoxTracker(object):
    """
  This class represents the internal state of individual tracked objects observed as bbox.
  """
    count = 0

    def __init__(self, bbox):
        """
    Initialises a tracker using initial bounding box.
    """
        # define constant velocity model
        # x= [x,y,s,r,vx,vy,vs], z=[x,y,s,r]
        # 初始化卡尔曼滤波器参数,7个状态变量和4个观测输入,运动形式和转换矩阵的确定都是基于匀速运动模型
        self.kf = KalmanFilter(dim_x=7, dim_z=4)
        # 状态转移矩阵F
        self.kf.F = np.array(
            [[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0],
             [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
        # 观测矩阵
        self.kf.H = np.array(
            [[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])
        # 观测噪声协方差矩阵
        self.kf.R[2:, 2:] *= 10.
        # 先验估计协方差
        self.kf.P[4:, 4:] *= 1000.  # give high uncertainty to the unobservable initial velocities
        self.kf.P *= 10.
        # 状态噪声协方差
        self.kf.Q[-1, -1] *= 0.01
        self.kf.Q[4:, 4:] *= 0.01

        self.kf.x[:4] = convert_bbox_to_z(bbox)
        self.time_since_update = 0
        self.id = KalmanBoxTracker.count
        KalmanBoxTracker.count += 1
        self.history = []
        self.hits = 0
        self.hit_streak = 0
        self.age = 0

    def update(self, bbox):
        """
    Updates the state vector with observed bbox.
    """
        self.time_since_update = 0
        self.history = []
        self.hits += 1
        self.hit_streak += 1
        self.kf.update(convert_bbox_to_z(bbox))

    def predict(self):
        """
    Advances the state vector and returns the predicted bounding box estimate.
    """
        if (self.kf.x[6] + self.kf.x[2]) <= 0:
            self.kf.x[6] *= 0.0
        self.kf.predict()
        self.age += 1
        if self.time_since_update > 0:
            self.hit_streak = 0
        self.time_since_update += 1
        self.history.append(convert_x_to_bbox(self.kf.x))
        return self.history[-1]

    def get_state(self):
        """
    Returns the current bounding box estimate.
    """
        return convert_x_to_bbox(self.kf.x)

参考:
https://www.likecs.com/show-331696.html
https://blog.csdn.net/zimiao552147572/article/details/105985289

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
上一篇 2022年5月16日 下午2:09
下一篇 2022年5月16日 下午2:13

相关推荐

本站注重文章个人版权,不会主动收集付费或者带有商业版权的文章,如果出现侵权情况只可能是作者后期更改了版权声明,如果出现这种情况请主动联系我们,我们看到会在第一时间删除!本站专注于人工智能高质量优质文章收集,方便各位学者快速找到学习资源,本站收集的文章都会附上文章出处,如果不愿意分享到本平台,我们会第一时间删除!