Molecule Attention Transformer(一)

应用Transformer框架对分子属性进行预测,代码:MAT,原文:Molecule Attention Transformer。变量名,函数名很多来自The Annotated Transformer,在《深入浅出Embedding》一书中也做了讲解。本文主要从实例运行开始一步步看代码具体内容,整体模型如下:

请添加图片描述

1.数据准备

from featurization.data_utils import load_data_from_df, construct_loader
batch_size = 64

# Formal charges are one-hot encoded to keep compatibility with the pre-trained weights.
# If you do not plan to use the pre-trained weights, we recommend to set one_hot_formal_charge to False.
X, y = load_data_from_df('../data/freesolv/freesolv.csv', one_hot_formal_charge=True)
data_loader = construct_loader(X, y, batch_size)
  • 利用 load_data_from_df 读入原始数据,再用 construct_loader 将数据转化为 torch.utils.data.DataLoader 对象

1.1.load_data_from_df

def load_data_from_df(dataset_path, add_dummy_node=True, one_hot_formal_charge=False, use_data_saving=True):
    """Load and featurize data stored in a CSV file.
    Args:
        dataset_path (str): A path to the CSV file containing the data. It should have two columns:
                            the first one contains SMILES strings of the compounds,
                            the second one contains labels.
        add_dummy_node (bool): If True, a dummy node will be added to the molecular graph. Defaults to True.
        one_hot_formal_charge (bool): If True, formal charges on atoms are one-hot encoded. Defaults to False.
        use_data_saving (bool): If True, saved features will be loaded from the dataset directory; if no feature file
                                is present, the features will be saved after calculations. Defaults to True.
    Returns:
        A tuple (X, y) in which X is a list of graph descriptors (node features, adjacency matrices, distance matrices),
        and y is a list of the corresponding labels.
    """
    feat_stamp = f'{"_dn" if add_dummy_node else ""}{"_ohfc" if one_hot_formal_charge else ""}'
    feature_path = dataset_path.replace('.csv', f'{feat_stamp}.p')
    if use_data_saving and os.path.exists(feature_path):
        logging.info(f"Loading features stored at '{feature_path}'")
        x_all, y_all = pickle.load(open(feature_path, "rb"))
        return x_all, y_all

    data_df = pd.read_csv(dataset_path)

    data_x = data_df.iloc[:, 0].values
    data_y = data_df.iloc[:, 1].values

    if data_y.dtype == np.float64:
        data_y = data_y.astype(np.float32)

    x_all, y_all = load_data_from_smiles(data_x, data_y, add_dummy_node=add_dummy_node,
                                         one_hot_formal_charge=one_hot_formal_charge)
    if use_data_saving and not os.path.exists(feature_path):
        logging.info(f"Saving features at '{feature_path}'")
        pickle.dump((x_all, y_all), open(feature_path, "wb"))

    return x_all, y_all
  • feature_path 主要是判断是否利用已经保存的数据,可以跳过
  • data_x 是 smiles 的序列数据,data_f 是标量数值,示例如下:
data_xdata_y
0CN©C(=O)c1ccc(cc1)OC-1.874467
1CS(=O)(=O)Cl-0.277514
2CC©C=C1.465089
3CCc1cnccn1-0.428367
4CCCCCCCO-0.105855
  • load_data_from_smiles 将 data_x 的 smiles 数据处理成 graph descriptors (node features, adjacency matrices, distance matrices),data_y 不变
  • 得到特征 x_all 和 y_all 后返回,示例如下:
import numpy as np
np.asarray(X).shape,np.asarray(y).shape #((642, 3), (642, 1))
X[0],y[0]
"""
([array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
          0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0.],
         [0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
          0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
          0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
          0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
         [0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
          0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
          0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1., 1.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
          0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
          0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
          0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1., 1.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
          0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
          0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1.],
         [0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
          0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
          0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0.]]),
  array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 0.],
         [0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 1., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0.],
         [0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1.],
         [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]]),
  array([[1.00000000e+06, 1.00000000e+06, 1.00000000e+06, 1.00000000e+06,
          1.00000000e+06, 1.00000000e+06, 1.00000000e+06, 1.00000000e+06,
          1.00000000e+06, 1.00000000e+06, 1.00000000e+06, 1.00000000e+06,
          1.00000000e+06, 1.00000000e+06],
         ...
 [-1.8744674])
 """
X[0][0].shape,X[0][1].shape,X[0][2].shape #((14, 28), (14, 14), (14, 14))
X[1][0].shape,X[1][1].shape,X[1][2].shape #((6, 28), (6, 6), (6, 6))
  • 每个分子原子数不同导致维度不一致,这里没有统一。每个原子用28维特征表示,可以在 featurize_mol 看出

1.1.1.load_data_from_smiles

def load_data_from_smiles(x_smiles, labels, add_dummy_node=True, one_hot_formal_charge=False):
    """Load and featurize data from lists of SMILES strings and labels.
    Args:
        x_smiles (list[str]): A list of SMILES strings.
        labels (list[float]): A list of the corresponding labels.
        add_dummy_node (bool): If True, a dummy node will be added to the molecular graph. Defaults to True.
        one_hot_formal_charge (bool): If True, formal charges on atoms are one-hot encoded. Defaults to False.
    Returns:
        A tuple (X, y) in which X is a list of graph descriptors (node features, adjacency matrices, distance matrices),
        and y is a list of the corresponding labels.
    """
    x_all, y_all = [], []

    for smiles, label in zip(x_smiles, labels):
        try:
            mol = MolFromSmiles(smiles)
            try:
                mol = Chem.AddHs(mol)
                AllChem.EmbedMolecule(mol, maxAttempts=5000)
                AllChem.UFFOptimizeMolecule(mol)
                mol = Chem.RemoveHs(mol)
            except:
                AllChem.Compute2DCoords(mol)

            afm, adj, dist = featurize_mol(mol, add_dummy_node, one_hot_formal_charge)
            x_all.append([afm, adj, dist])
            y_all.append([label])
        except ValueError as e:
            logging.warning('the SMILES ({}) can not be converted to a graph.\nREASON: {}'.format(smiles, e))

    return x_all, y_all

1.1.2.featurize_mol

def featurize_mol(mol, add_dummy_node, one_hot_formal_charge):
    """Featurize molecule.
    Args:
        mol (rdchem.Mol): An RDKit Mol object.
        add_dummy_node (bool): If True, a dummy node will be added to the molecular graph.
        one_hot_formal_charge (bool): If True, formal charges on atoms are one-hot encoded.
    Returns:
        A tuple of molecular graph descriptors (node features, adjacency matrix, distance matrix).
    """
    node_features = np.array([get_atom_features(atom, one_hot_formal_charge)
                              for atom in mol.GetAtoms()])

    adj_matrix = np.eye(mol.GetNumAtoms())
    for bond in mol.GetBonds():
        begin_atom = bond.GetBeginAtom().GetIdx()
        end_atom = bond.GetEndAtom().GetIdx()
        adj_matrix[begin_atom, end_atom] = adj_matrix[end_atom, begin_atom] = 1

    conf = mol.GetConformer()
    pos_matrix = np.array([[conf.GetAtomPosition(k).x, conf.GetAtomPosition(k).y, conf.GetAtomPosition(k).z]
                           for k in range(mol.GetNumAtoms())])
    dist_matrix = pairwise_distances(pos_matrix)

    if add_dummy_node:
        m = np.zeros((node_features.shape[0] + 1, node_features.shape[1] + 1))
        m[1:, 1:] = node_features
        m[0, 0] = 1.
        node_features = m

        m = np.zeros((adj_matrix.shape[0] + 1, adj_matrix.shape[1] + 1))
        m[1:, 1:] = adj_matrix
        adj_matrix = m

        m = np.full((dist_matrix.shape[0] + 1, dist_matrix.shape[1] + 1), 1e6)
        m[1:, 1:] = dist_matrix
        dist_matrix = m

    return node_features, adj_matrix, dist_matrix
  • node_features 主要用 get_atom_features 得到
  • 邻接矩阵 adj_matrix 原子相连为1,不连为0
  • 距离矩阵 dist_matrix 主要用 pairwise_distances 得到,mol 传入前已处理,GetConformer获取原子坐标信息,pos_matrix 是 Molecule Attention Transformer(一)维矩阵,dist_matrix 得到的是Molecule Attention Transformer(一)维对称矩阵
  • add_dummy_node 默认是True,dummy_node 不与分子中的任何原子相连,它与其他原子的距离设为了Molecule Attention Transformer(一),这样模型可以在什么 pattern 都找不到的时候跳过搜索,类似 BERT 中的 [SEP] 词元(原文中提到)。添加 dummy_node 后,node_feature 在第一个编码,邻接矩阵对应为0,距离矩阵对应设为1e6
pos_matrix=np.array([
                     [1,1,1],
                     [1,2,3]
])
print(pairwise_distances(pos_matrix))
"""
[[0.         2.23606798]
 [2.23606798 0.        ]]
"""
print(np.sqrt((1-1)**2+(1-2)**2+(1-3)**2)) #2.23606797749979

1.1.3.get_atom_features

def get_atom_features(atom, one_hot_formal_charge=True):
    """Calculate atom features.
    Args:
        atom (rdchem.Atom): An RDKit Atom object.
        one_hot_formal_charge (bool): If True, formal charges on atoms are one-hot encoded.
    Returns:
        A 1-dimensional array (ndarray) of atom features.
    """
    attributes = []

    attributes += one_hot_vector(
        atom.GetAtomicNum(),
        [5, 6, 7, 8, 9, 15, 16, 17, 35, 53, 999]
    )

    attributes += one_hot_vector(
        len(atom.GetNeighbors()),
        [0, 1, 2, 3, 4, 5]
    )

    attributes += one_hot_vector(
        atom.GetTotalNumHs(),
        [0, 1, 2, 3, 4]
    )

    if one_hot_formal_charge:
        attributes += one_hot_vector(
            atom.GetFormalCharge(),
            [-1, 0, 1]
        )
    else:
        attributes.append(atom.GetFormalCharge())

    attributes.append(atom.IsInRing())
    attributes.append(atom.GetIsAromatic())

    return np.array(attributes, dtype=np.float32)
  • 每个原子的特征以28维 one-hot 表示,可以从原文中了解,0-11依据原子序数编码有机物常见原子(包括了dummy_node),12-17编码邻位原子的数目,18-22编码氢原子数,23-25编码原子电荷(one_hot_formal_charge为True),26编码原子是否位于环上,27编码是否是芳香性原子,此函数返回的实际是 27 维 one-hot,因为第一步实际没有编码 dummy_node,真正编码在 featurize_mol,下面的图可能有误导,实际 dummy_node 编码在第一列,而不是倒数第二列

1.1.4…one_hot_vector

def one_hot_vector(val, lst):
    """Converts a value to a one-hot vector based on options in lst"""
    if val not in lst:
        val = lst[-1]
    return map(lambda x: x == val, lst)
  • 依据 lst 中的内容进行编码,如果不存在就以最后一位编码,例如不是有机物常见原子以[0,0,…1]表示

1.2.construct_loader

def construct_loader(x, y, batch_size, shuffle=True):
    """Construct a data loader for the provided data.
    Args:
        x (list): A list of molecule features.
        y (list): A list of the corresponding labels.
        batch_size (int): The batch size.
        shuffle (bool): If True the data will be loaded in a random order. Defaults to True.
    Returns:
        A DataLoader object that yields batches of padded molecule features.
    """
    data_set = construct_dataset(x, y)
    loader = torch.utils.data.DataLoader(dataset=data_set,
                                         batch_size=batch_size,
                                         collate_fn=mol_collate_func,
                                         shuffle=shuffle)
    return loader
  • 先构造 dataset,定义处理函数 mol_collate_func,传入 DataLoader 返回 loader 对象

1.2.1.construct_dataset

def construct_dataset(x_all, y_all):
    """Construct a MolDataset object from the provided data.
    Args:
        x_all (list): A list of molecule features.
        y_all (list): A list of the corresponding labels.
    Returns:
        A MolDataset object filled with the provided data.
    """
    output = [Molecule(data[0], data[1], i)
              for i, data in enumerate(zip(x_all, y_all))]
    return MolDataset(output)
  • 构造Molecule 对象列表,再构造 MolDataset 类,Molecule 对象接收 数据索引,x,y

1.2.2.Molecule

class Molecule:
    """
        Class that represents a train/validation/test datum
        - self.label: 0 neg, 1 pos -1 missing for different target.
    """

    def __init__(self, x, y, index):
        self.node_features = x[0]
        self.adjacency_matrix = x[1]
        self.distance_matrix = x[2]
        self.y = y
        self.index = index
  • 将 x,y,index 数据整合在一起的类

1.2.3.MolDataset

class MolDataset(Dataset):
    """
    Class that represents a train/validation/test dataset that's readable for PyTorch
    Note that this class inherits torch.utils.data.Dataset
    """

    def __init__(self, data_list):
        """
        @param data_list: list of Molecule objects
        """
        self.data_list = data_list

    def __len__(self):
        return len(self.data_list)

    def __getitem__(self, key):
        if type(key) == slice:
            return MolDataset(self.data_list[key])
        return self.data_list[key]
  • 继承 torch.utils.data.Dataset,需要实现这里列出的三个方法

1.2.4.mol_collate_func

def mol_collate_func(batch):
    """Create a padded batch of molecule features.
    Args:
        batch (list[Molecule]): A batch of raw molecules.
    Returns:
        A list of FloatTensors with padded molecule features:
        adjacency matrices, node features, distance matrices, and labels.
    """
    adjacency_list, distance_list, features_list = [], [], []
    labels = []

    max_size = 0
    for molecule in batch:
        if type(molecule.y[0]) == np.ndarray:
            labels.append(molecule.y[0])
        else:
            labels.append(molecule.y)
        if molecule.adjacency_matrix.shape[0] > max_size:
            max_size = molecule.adjacency_matrix.shape[0]

    for molecule in batch:
        adjacency_list.append(pad_array(molecule.adjacency_matrix, (max_size, max_size)))
        distance_list.append(pad_array(molecule.distance_matrix, (max_size, max_size)))
        features_list.append(pad_array(molecule.node_features, (max_size, molecule.node_features.shape[1])))

    return [FloatTensor(features) for features in (adjacency_list, features_list, distance_list, labels)]
  • 第一个 for 循环得到 batch 中分子最多原子数和 labels 的列表,以 max_size 为基准 padding
  • 第二个 for 循环对 x 的三个数据矩阵 padding,pad_array 参数是数据矩阵和矩阵维度限定

1.2.5.pad_array

def pad_array(array, shape, dtype=np.float32):
    """Pad a 2-dimensional array with zeros.
    Args:
        array (ndarray): A 2-dimensional array to be padded.
        shape (tuple[int]): The desired shape of the padded array.
        dtype (data-type): The desired data-type for the array.
    Returns:
        A 2-dimensional array of the given shape padded with zeros.
    """
    padded_array = np.zeros(shape, dtype=dtype)
    padded_array[:array.shape[0], :array.shape[1]] = array
    return padded_array
  • 在规定维度之外的部分补0

1.3.总结

  • 数据准备阶段输出 dataloader 对象,每次迭代一个 batch。经过了 mol_collate_func 的处理,不同 batch 原子数并没有统一,只有一个 batch 内原子数才恒定。data[0] 是邻接矩阵,data[1] 是 node_features,data[2] 是 距离矩阵
batch_size=2
cnt=1
for data in data_loader:
    print(data[0].shape)
    print(data[1].shape)
    print(data[2].shape)
    print(data[3].shape)
    cnt+=1
    if (cnt==3):break
"""
torch.Size([2, 13, 13])
torch.Size([2, 13, 28])
torch.Size([2, 13, 13])
torch.Size([2, 1])
torch.Size([2, 9, 9])
torch.Size([2, 9, 28])
torch.Size([2, 9, 9])
torch.Size([2, 1])
"""

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
上一篇 2022年5月18日 上午11:21
下一篇 2022年5月18日 上午11:25

相关推荐

本站注重文章个人版权,不会主动收集付费或者带有商业版权的文章,如果出现侵权情况只可能是作者后期更改了版权声明,如果出现这种情况请主动联系我们,我们看到会在第一时间删除!本站专注于人工智能高质量优质文章收集,方便各位学者快速找到学习资源,本站收集的文章都会附上文章出处,如果不愿意分享到本平台,我们会第一时间删除!