语义分割系列11-DAnet(pytorch实现)

DAnet:Dual Attention Network for Scene Segmentation

发布于CVPR2019,本文将进行DAnet的论文讲解和复现工作。

论文部分

主要思想

DAnet的思想并没有之前提到的DFAnet那么花里胡哨,需要各种多层次的连接,DAnet的主要思想就是——同时引入了空间注意力和通道注意力,也就是Dual Attention = Channel Attention + Position Attention。

其中,Position Attention可以在位置上,捕捉任意两个位置之间的上下文信息,而Channel Attention可以捕捉通道维度上的上下文信息

关于Position Attention:较为通俗的解释是,所有的位置,两两之间都有一个权重γ,这个γ的值由两个位置之间的相似性来决定,而不是由两个位置的距离来决定,这就提供了一个好处,也就是——无论两个位置距离多远,只要他们相似度高,空间注意力机制就可以锁定这两个位置。

关于Channel Attention:在高级语义特征中,每一个通道都可以被认为是对于某一个类的特殊响应,增强拥有这种响应的特征通道可以有效的提高分割效果。而通道注意力在EncNet和DFAnet中都有应用,通过计算一个权重因子,对每个通道进行加权,突出重要的通道,增强特征表示。

作者的一些观点

  1. 关于为什么需要Attention机制,作者认为,在卷积的过程中,导致感受野局限在某一范围,而这种操作导致相同类别的像素之间产生一定的差异,这会导致识别上准确率降低的问题。
  2. 与大部分作者相同,在文中作者也对ResNet的最后几层做了一些改动,加入空洞卷积,将原先ResNet下采样速率从32倍降低到8倍,也就是ResNet最后一层输出的特征图大小为原始输入的1/8。这样子做的好处就是保留了更多的细节信息,毕竟下采样过多倍速以后细节容易丢失。

模型部分

DAnet主要的部分是通道注意力和空间注意力的实现,模型如图1。

图1 DAnet

Position attention module

图2 Position attention

对于空间注意力的实现,首先将特征图A(C×H×W)输入到卷积模块中,生成B(C×H×W)和C(C×H×W),将B和C reshape成(C×N)维度,其中N=H×W,N就是像素点的个数。随后,将B矩阵转置后和C矩阵相乘,将结果输入到softmax中,得到一个空间注意力图S(N×N)。矩阵的乘法相当于让每一个像素点之间都产生了联系,也就是上文提到的两个位置之间的相似度γ。其中,两个位置相似度越高,Sji这个值就越大。

同样,A输入到另一个卷积层生成新的特征映射D(C×H×W),reshape成C×N后与上述的空间注意力图S的转置进行相乘,这样就得到了C×N大小的矩阵,再将这个矩阵reshape成原来的C×H×W大小。将这个矩阵乘以一个系数α(与前文提到的α不是同一个值),然后加上原始的特征图A。这样就实现了一个空间注意力机制(Position Attention)。需要注意的是,这个α值是可学习参数,初始化为0。

Channel Attention

Channel Attention机制的实现与Position Attention类似,但与DFAnet和EncNet中使用fc attention来实现Channel Attention的方式略微不同。

图3 Channel Attention

同样,特征图A(C×H×W)reshape成C×N的矩阵,分别经过转置、矩阵乘法、softmax到注意力图X(C×C)。

随后这个注意力图X与reshape成C×N的A矩阵进行矩阵乘法,得到的输出(C×N)再reshape成C×H×W和原始特征图A进行加权。

这里的β是一个可学习参数,初始化为0。

需要注意的是计算通道注意力时没有通过任何卷积层来嵌入特征,与Position attention实现上有一定差异。作者的解释是,这样可以保留原始通道之间的关系。

结果部分

作者在Cityscapes、PASCAL VOC等数据集上都做了一些测试,来证明DAnet的优越性。同时呢,作者也对Attention的两个模块做了一个可视化,见图4。

图4 attention可视化

可以看到,Attention模块确实能够看到一些重要的信息,比如车、树等。效果也确实很好。

模型复现

DAnet网络

主干网络resnet50

import torch
import torch.nn as nn

class BasicBlock(nn.Module):
    expansion: int = 4
    def __init__(self, inplanes, planes, stride = 1, downsample = None, groups = 1,
        base_width = 64, dilation = 1, norm_layer = None):
        
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = nn.Conv2d(inplanes, planes ,kernel_size=3, stride=stride, 
                               padding=dilation,groups=groups, bias=False,dilation=dilation)
        
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(planes, planes ,kernel_size=3, stride=stride, 
                               padding=dilation,groups=groups, bias=False,dilation=dilation)
        
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample= None,
        groups = 1, base_width = 64, dilation = 1, norm_layer = None,):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.0)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=1, bias=False)
        self.bn1 = norm_layer(width)
        self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, bias=False, padding=dilation, dilation=dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, stride=1, bias=False)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)
        return out


class ResNet(nn.Module):
    def __init__(
        self,block, layers,num_classes = 1000, zero_init_residual = False, groups = 1,
        width_per_group = 64, replace_stride_with_dilation = None, norm_layer = None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer
        self.inplanes = 64
        self.dilation = 2
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
            
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=1, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]

    def _make_layer(
        self,
        block,
        planes,
        blocks,
        stride = 1,
        dilate = False,
    ):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = stride
            
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,  planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                norm_layer(planes * block.expansion))

        layers = []
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )
        return nn.Sequential(*layers)

    def _forward_impl(self, x):

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        return x

    def forward(self, x) :
        return self._forward_impl(x)
    def _resnet(block, layers, pretrained_path = None, **kwargs,):
        model = ResNet(block, layers, **kwargs)
        if pretrained_path is not None:
            model.load_state_dict(torch.load(pretrained_path),  strict=False)
        return model
    
    def resnet50(pretrained_path=None, **kwargs):
        return ResNet._resnet(Bottleneck, [3, 4, 6, 3],pretrained_path,**kwargs)
    
    def resnet101(pretrained_path=None, **kwargs):
        return ResNet._resnet(Bottleneck, [3, 4, 23, 3],pretrained_path,**kwargs)

DAHead

class PositionAttention(nn.Module):
    def __init__(self, in_channels):
        super(PositionAttention, self).__init__()
        self.convB = nn.Conv2d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
        self.convC = nn.Conv2d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
        self.convD = nn.Conv2d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
        #创建一个可学习参数a作为权重,并初始化为0.
        self.gamma = torch.nn.Parameter(torch.FloatTensor(1), requires_grad=True)
        self.gamma.data.fill_(0.)
        self.softmax = nn.Softmax()
        
    def forward(self, x):
        b,c,h,w = x.size()
        B = self.convB(x)
        C = self.convB(x)
        D = self.convB(x)
        S = self.softmax(torch.matmul(B.view(b, c, h*w).transpose(1, 2), C.view(b, c, h*w)))
        E = torch.matmul(D.view(b, c, h*w), S.transpose(1, 2)).view(b,c,h,w)
        #gamma is a parameter which can be training and iter
        E = self.gamma * E + x
        
        return E
    
class ChannelAttention(nn.Module):
    def __init__(self):
        super(ChannelAttention, self).__init__()
        self.beta = torch.nn.Parameter(torch.FloatTensor(1), requires_grad=True)
        self.beta.data.fill_(0.)
        self.softmax = nn.Softmax()
        
    def forward(self, x):
        b,c,h,w = x.size()
        X = self.softmax(torch.matmul(x.view(b, c, h*w), x.view(b, c, h*w).transpose(1, 2)))
        X = torch.matmul(X.transpose(1, 2), x.view(b, c, h*w)).view(b, c, h, w)
        X = self.beta * X + x
        return X
    
class DAHead(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(DAHead, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, in_channels//4, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels//4),
            nn.ReLU(),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(in_channels, in_channels//4, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels//4),
            nn.ReLU(),
        )
        
        self.conv3 = nn.Sequential(
            nn.Conv2d(in_channels//4, in_channels//4, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels//4),
            nn.ReLU(),
        )
        
        self.conv4 = nn.Sequential(
            nn.Conv2d(in_channels//4, in_channels//8, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels//8),
            nn.ReLU(),
            nn.Conv2d(in_channels//8, num_classes, kernel_size=3, padding=1, bias=False),
        )

        self.PositionAttention = PositionAttention(in_channels//4)
        self.ChannelAttention = ChannelAttention()
        
    def forward(self, x):
        x_PA = self.conv1(x)
        x_CA = self.conv2(x)
        PosionAttentionMap = self.PositionAttention(x_PA)
        ChannelAttentionMap = self.ChannelAttention(x_CA)
        #这里可以额外分别做PAM和CAM的卷积输出,分别对两个分支做一个上采样和预测, 
        #可以生成一个cam loss和pam loss以及最终融合后的结果的loss.以及做一些可视化工作
        #这里只输出了最终的融合结果.与原文有一些出入.
        output = self.conv3(PosionAttentionMap + ChannelAttentionMap)
        output = nn.functional.interpolate(output, scale_factor=8, mode="bilinear")
        output = self.conv4(output)
        return output
        

DAnet

class DAnet(nn.Module):
    def __init__(self, num_classes):
        super(DAnet, self).__init__()
        self.encoder = ResNet.resnet50(replace_stride_with_dilation=[1,2,4])
        self.decoder = DAHead(in_channels=2048, num_classes=num_classes)
        
    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x
        

数据集-Camvid

数据集的创建和使用见教程:CamVid数据集的创建和使用

# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os.path as osp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2

torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):
    """CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
    
    Args:
        images_dir (str): path to images folder
        masks_dir (str): path to segmentation masks folder
        class_values (list): values of classes to extract from segmentation mask
        augmentation (albumentations.Compose): data transfromation pipeline 
            (e.g. flip, scale, etc.)
        preprocessing (albumentations.Compose): data preprocessing 
            (e.g. noralization, shape manipulation, etc.)
    """
    
    def __init__(self, images_dir, masks_dir):
        self.transform = A.Compose([
            A.Resize(224, 224),
            A.HorizontalFlip(),
            A.VerticalFlip(),
            A.Normalize(),
            ToTensorV2(),
        ]) 
        self.ids = os.listdir(images_dir)
        self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
        self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]

    
    def __getitem__(self, i):
        # read data
        image = np.array(Image.open(self.images_fps[i]).convert('RGB'))
        mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))
        image = self.transform(image=image,mask=mask)
        
        return image['image'], image['mask'][:,:,0]
        
    def __len__(self):
        return len(self.ids)
    
    
# 设置数据集路径
DATA_DIR = r'dataset\camvid' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')
    
train_dataset = CamVidDataset(
    x_train_dir, 
    y_train_dir, 
)
val_dataset = CamVidDataset(
    x_valid_dir, 
    y_valid_dir, 
)

train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=True,drop_last=True)

模型训练

model = DAnet(num_classes=33).cuda()
#model.load_state_dict(torch.load(r"checkpoints/resnet101-5d3b4d8f.pth"),strict=False)
from d2l import torch as d2l
from tqdm import tqdm
import pandas as pd
#损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss(ignore_index=255)
#选用adam优化器来训练
optimizer = optim.SGD(model.parameters(),lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1, last_epoch=-1)

#训练50轮
epochs_num = 50
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,scheduler,
               devices=d2l.try_all_gpus()):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    
    loss_list = []
    train_acc_list = []
    test_acc_list = []
    epochs_list = []
    time_list = []
    for epoch in range(num_epochs):
        # Sum of training loss, sum of training accuracy, no. of examples,
        # no. of predictions
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = d2l.train_batch_ch13(
                net, features, labels.long(), loss, trainer, devices)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[3],
                              None))
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
        scheduler.step()
        print(f"epoch {epoch+1} --- loss {metric[0] / metric[2]:.3f} ---  train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- cost time {timer.sum()}")
        
        #---------保存训练数据---------------
        df = pd.DataFrame()
        loss_list.append(metric[0] / metric[2])
        train_acc_list.append(metric[1] / metric[3])
        test_acc_list.append(test_acc)
        epochs_list.append(epoch+1)
        time_list.append(timer.sum())
        
        df['epoch'] = epochs_list
        df['loss'] = loss_list
        df['train_acc'] = train_acc_list
        df['test_acc'] = test_acc_list
        df['time'] = time_list
        df.to_excel("savefile/DAnet_camvid.xlsx")
        #----------------保存模型-------------------
        if np.mod(epoch+1, 5) == 0:
            torch.save(model.state_dict(), f'checkpoints/DAnet_{epoch+1}.pth')

开始训练

train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num,scheduler)

训练结果

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
扎眼的阳光的头像扎眼的阳光普通用户
上一篇 2022年5月24日
下一篇 2022年5月24日

相关推荐