Transformer前沿——语义分割

进军方向

   Transformer自2017年诞生之后,迅速在NLP领域攻城略地,在极短的时间内晋升成为NLP领域绝对的霸主。Transformer进军CV领域的行动早在2018年就开始了,但是行进缓慢,直到2020年谷歌再次出手,提出Transformer进军CV领域的里程碑式的神作 ViT ,屠榜ImageNet、CIFAR10、CIFAR100,将Transformer在CV领域的潜力展示给世人,大家深受震撼与启发,随即争相涌入ViT研究浪潮中,直接推动了ViT的蓬勃发展。

   在阐述Transformer在CV领域开疆拓土的行军路线前,简单概括一条范式。基于深度学习的方法解决计算机视觉领域的各种任务,诸如图像分类、目标检测、语义分割、实例分割等,都遵循统一的范式,即,特征提取模块+任务模块。
特征提取模块 + 分类器 = 图像分类网络
特征提取模块 + 检测器 = 目标检测网络
特征提取模块 + 分割器 = 语义分割网络

  到这里,读者朋友可能已经猜到了,Transformer可以取代语义分割任务中的特征提取模块。但Transformer是否比原本基于 CNN 的特征提取模块更好?答案是肯定的,
Transformer前沿——语义分割
   至此,我们了解到,用Transformer取代语义分割中的特征提取模块是可行的,接下来,首先介绍Transformer在语义分割领域的开山制作 SETR

SETR: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers (CVPR 2021)

SETRSegmentation Transformer 前两个字母的组合

作者单位是 复旦、牛津大学、萨里大学、腾讯优图、Facebook

网络结构:ViT 特征提取 + 多层次特征融合 + 解码器

网络结构图

Transformer前沿——语义分割

实验效果

在ADE20K取得 50.28%的mIoU,这是该数据集首次出现mIoU超过50%的记录,同时在 Pascal Context取得 55.83%的mIoU,均是 STOA效果。

ADE20K 数据集上效果

ADE20K

Pascal Voc 数据集上的效果

pascal context

TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

面向医学图像分割,结合 擅于长距离上下文建模的Transformer 和 擅于捕捉低层细节信息的UNet。

作者单位:约翰霍普金斯大学、电子科技大学、斯坦福大学

网络结构:CNN特征提取 + 长距离上下文建模 + UNet解码器

网络结构图

TransUNet
  CNN特征提取:级联卷积提取特征向量,各个stage的输出用于跳跃连接。

  长距离上下文建模:使用12个Transformer层对CNN特征提取模块中得到特征向量,进一步做长距离上下文建模。

  UNet解码器:跳跃连接,逐级解码。

实验效果

Synapse multi-organ CT 数据集上的效果

Transformer前沿——语义分割

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers (NeuralPS 2021)

作者单位:香港大学、南京大学、英伟达、加州理工大学

网络结构:Mix-FFN取代位置嵌入 + Efficient Self-Attention缩减时间复杂度 + Overlapped patch Merging 保留局部连续性 + 极简decoder

网络结构图

Transformer前沿——语义分割
  Mix-FFN:ViT中位置编码的分辨率是固定的,在模型测试使用阶段,输入图像的分辨率并不固定,因此如果采用位置编码,则需通过重采样获得位置编码,显然,这会影响模型预测。本文作者认为通过填充零,卷积核尺寸3×3的卷积可以获得位置信息。具体做法是在一个简单的 前馈神经网络(FFN)中加入3×3 Conv,公式表示如下:
Transformer前沿——语义分割

  Efficient Self-Attention:作者指出经典的自注意力机制算法时间复杂度为Transformer前沿——语义分割,其中N为序列的长度。在ViT中序列长度 N 通常等于 H*W,其中H、W分别为图像高和宽。作者指出对于高分辨率图像,自注意力机制的时间复杂度太大,因此提出更高效的自制注意力算法。核心步骤为:
1)通过 reshape 操作,将输入序列的shape从Transformer前沿——语义分割变为Transformer前沿——语义分割,其中R为缩减系数;
2)通过线性映射,将 shape为 Transformer前沿——语义分割 的序列映射为 shape为 Transformer前沿——语义分割 的序列。
SegFormer的四个stage的缩减系数分别为 64、16、 4、1。

  Overlapped patch Merging:本文的作者认为ViT中采用的 patch merging 算法丢失了patch周围的局部连续性信息。因此提出,重叠的patch划分方法,具体做法通过一个宽高为3的窗口,步长为2,边缘填充为1,进行滑动。通过重叠保留了patch周围的局部连续性。

  极简decoder:作者认为特征提取过程中使用的自注意力机制,已经提取到了充分高层的语义特征,因此在解码阶段,无需通过级联卷积进一步提升模型感受野。因此,本文中的解码器只包含几个简单的线性映射和上采样层。

实验效果

ADE20K和Cityscape数据集上的效果

Transformer前沿——语义分割

面向移动设备的TopFormer (CVPR 2022),医学分割 DS-TransUNet,…

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
心中带点小风骚的头像心中带点小风骚普通用户
上一篇 2022年6月1日
下一篇 2022年6月1日

相关推荐