MMSegmention系列之五(自定义模型)

1、定制优化器

假设你想添加一个名为MyOptimizer的优化器,它有参数a, b和c。你需要首先在一个文件中实现新的优化器,例如在mmseg/core/optimizer/my_optimizer.py中:

from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module
class MyOptimizer(Optimizer):

    def __init__(self, a, b, c)

然后将此模块添加到mmseg/core/optimizer/_init.py中,这样注册表就会找到新模块并添加它:

from .my_optimizer import MyOptimizer

然后您可以在配置文件的优化器字段中使用MyOptimizer。在配置中,优化器是由字段优化器定义的,如下所示:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)

要使用您自己的优化器,可以将字段更改为

optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)

我们已经支持使用PyTorch实现的所有优化器,唯一的修改就是更改配置文件的优化器字段。例如,如果您想使用ADAM,尽管性能会下降很多,但修改如下。

optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)

2、定制优化器的构造函数

一些模型可能有一些参数特定的设置来进行优化,例如BatchNoarm层的权重衰减。用户可以通过定制优化器构造函数来进行这些细粒度的参数调优。

from mmcv.utils import build_from_cfg

from mmcv.runner import OPTIMIZER_BUILDERS
from .cocktail_optimizer import CocktailOptimizer


@OPTIMIZER_BUILDERS.register_module
class CocktailOptimizerConstructor(object):

    def __init__(self, optimizer_cfg, paramwise_cfg=None):

    def __call__(self, model):

        return my_optimizer

3、开发新的组件

MMSegmentation主要有两类组件:
backbone:通常是卷积网络的堆叠来提取特征图,例如ResNet, HRNet. head:语义分割图解码组件。

1、添加新的骨干

这里我们以MobileNet为例展示如何开发新组件。

1. 创建一个新文件mmseg/models/backbone /mobilenet.py

import torch.nn as nn

from ..registry import BACKBONES


@BACKBONES.register_module
class MobileNet(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass

    def init_weights(self, pretrained=None):
        pass

2、Import the module in mmseg/models/backbones/init.py.

from .mobilenet import MobileNet

3、Use it in your config file.

model = dict(
    ...
    backbone=dict(
        type='MobileNet',
        arg1=xxx,
        arg2=xxx),
    ...

2、添加新头

在MMSegmentation中,我们为所有的分割头提供了一个BaseDecodeHead

from abc import ABCMeta, abstractmethod

import torch
import torch.nn as nn
from mmcv.runner import BaseModule, auto_fp16, force_fp32

from mmseg.core import build_pixel_sampler
from mmseg.ops import resize
from ..builder import build_loss
from ..losses import accuracy


class BaseDecodeHead(BaseModule, metaclass=ABCMeta):
    """Base class for BaseDecodeHead.
    Args:
        in_channels (int|Sequence[int]): Input channels.
        channels (int): Channels after modules, before conv_seg.
        num_classes (int): Number of classes.
        dropout_ratio (float): Ratio of dropout layer. Default: 0.1.
        conv_cfg (dict|None): Config of conv layers. Default: None.
        norm_cfg (dict|None): Config of norm layers. Default: None.
        act_cfg (dict): Config of activation layers.
            Default: dict(type='ReLU')
        in_index (int|Sequence[int]): Input feature index. Default: -1
        input_transform (str|None): Transformation type of input features.
            Options: 'resize_concat', 'multiple_select', None.
            'resize_concat': Multiple feature maps will be resize to the
                same size as first one and than concat together.
                Usually used in FCN head of HRNet.
            'multiple_select': Multiple feature maps will be bundle into
                a list and passed into decode head.
            None: Only one select feature map is allowed.
            Default: None.
        loss_decode (dict | Sequence[dict]): Config of decode loss.
            The `loss_name` is property of corresponding loss function which
            could be shown in training log. If you want this loss
            item to be included into the backward graph, `loss_` must be the
            prefix of the name. Defaults to 'loss_ce'.
             e.g. dict(type='CrossEntropyLoss'),
             [dict(type='CrossEntropyLoss', loss_name='loss_ce'),
              dict(type='DiceLoss', loss_name='loss_dice')]
            Default: dict(type='CrossEntropyLoss').
        ignore_index (int | None): The label index to be ignored. When using
            masked BCE loss, ignore_index should be set to None. Default: 255.
        sampler (dict|None): The config of segmentation map sampler.
            Default: None.
        align_corners (bool): align_corners argument of F.interpolate.
            Default: False.
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 in_channels,
                 channels,
                 *,
                 num_classes,
                 dropout_ratio=0.1,
                 conv_cfg=None,
                 norm_cfg=None,
                 act_cfg=dict(type='ReLU'),
                 in_index=-1,
                 input_transform=None,
                 loss_decode=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 ignore_index=255,
                 sampler=None,
                 align_corners=False,
                 init_cfg=dict(
                     type='Normal', std=0.01, override=dict(name='conv_seg'))):
        super(BaseDecodeHead, self).__init__(init_cfg)
        self._init_inputs(in_channels, in_index, input_transform)
        self.channels = channels
        self.num_classes = num_classes
        self.dropout_ratio = dropout_ratio
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.in_index = in_index

        self.ignore_index = ignore_index
        self.align_corners = align_corners

        if isinstance(loss_decode, dict):
            self.loss_decode = build_loss(loss_decode)
        elif isinstance(loss_decode, (list, tuple)):
            self.loss_decode = nn.ModuleList()
            for loss in loss_decode:
                self.loss_decode.append(build_loss(loss))
        else:
            raise TypeError(f'loss_decode must be a dict or sequence of dict,\
                but got {type(loss_decode)}')

        if sampler is not None:
            self.sampler = build_pixel_sampler(sampler, context=self)
        else:
            self.sampler = None

        self.conv_seg = nn.Conv2d(channels, num_classes, kernel_size=1)
        if dropout_ratio > 0:
            self.dropout = nn.Dropout2d(dropout_ratio)
        else:
            self.dropout = None
        self.fp16_enabled = False

    def extra_repr(self):
        """Extra repr."""
        s = f'input_transform={self.input_transform}, ' \
            f'ignore_index={self.ignore_index}, ' \
            f'align_corners={self.align_corners}'
        return s

    def _init_inputs(self, in_channels, in_index, input_transform):
        """Check and initialize input transforms.
        The in_channels, in_index and input_transform must match.
        Specifically, when input_transform is None, only single feature map
        will be selected. So in_channels and in_index must be of type int.
        When input_transform
        Args:
            in_channels (int|Sequence[int]): Input channels.
            in_index (int|Sequence[int]): Input feature index.
            input_transform (str|None): Transformation type of input features.
                Options: 'resize_concat', 'multiple_select', None.
                'resize_concat': Multiple feature maps will be resize to the
                    same size as first one and than concat together.
                    Usually used in FCN head of HRNet.
                'multiple_select': Multiple feature maps will be bundle into
                    a list and passed into decode head.
                None: Only one select feature map is allowed.
        """

        if input_transform is not None:
            assert input_transform in ['resize_concat', 'multiple_select']
        self.input_transform = input_transform
        self.in_index = in_index
        if input_transform is not None:
            assert isinstance(in_channels, (list, tuple))
            assert isinstance(in_index, (list, tuple))
            assert len(in_channels) == len(in_index)
            if input_transform == 'resize_concat':
                self.in_channels = sum(in_channels)
            else:
                self.in_channels = in_channels
        else:
            assert isinstance(in_channels, int)
            assert isinstance(in_index, int)
            self.in_channels = in_channels

    def _transform_inputs(self, inputs):
        """Transform inputs for decoder.
        Args:
            inputs (list[Tensor]): List of multi-level img features.
        Returns:
            Tensor: The transformed inputs
        """

        if self.input_transform == 'resize_concat':
            inputs = [inputs[i] for i in self.in_index]
            upsampled_inputs = [
                resize(
                    input=x,
                    size=inputs[0].shape[2:],
                    mode='bilinear',
                    align_corners=self.align_corners) for x in inputs
            ]
            inputs = torch.cat(upsampled_inputs, dim=1)
        elif self.input_transform == 'multiple_select':
            inputs = [inputs[i] for i in self.in_index]
        else:
            inputs = inputs[self.in_index]

        return inputs

    @auto_fp16()
    @abstractmethod
    def forward(self, inputs):
        """Placeholder of forward function."""
        pass

    def forward_train(self, inputs, img_metas, gt_semantic_seg, train_cfg):
        """Forward function for training.
        Args:
            inputs (list[Tensor]): List of multi-level img features.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:Collect`.
            gt_semantic_seg (Tensor): Semantic segmentation masks
                used if the architecture supports semantic segmentation task.
            train_cfg (dict): The training config.
        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        seg_logits = self.forward(inputs)
        losses = self.losses(seg_logits, gt_semantic_seg)
        return losses

    def forward_test(self, inputs, img_metas, test_cfg):
        """Forward function for testing.
        Args:
            inputs (list[Tensor]): List of multi-level img features.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:Collect`.
            test_cfg (dict): The testing config.
        Returns:
            Tensor: Output segmentation map.
        """
        return self.forward(inputs)

    def cls_seg(self, feat):
        """Classify each pixel."""
        if self.dropout is not None:
            feat = self.dropout(feat)
        output = self.conv_seg(feat)
        return output

    @force_fp32(apply_to=('seg_logit', ))
    def losses(self, seg_logit, seg_label):
        """Compute segmentation loss."""
        loss = dict()
        seg_logit = resize(
            input=seg_logit,
            size=seg_label.shape[2:],
            mode='bilinear',
            align_corners=self.align_corners)
        if self.sampler is not None:
            seg_weight = self.sampler.sample(seg_logit, seg_label)
        else:
            seg_weight = None
        seg_label = seg_label.squeeze(1)

        if not isinstance(self.loss_decode, nn.ModuleList):
            losses_decode = [self.loss_decode]
        else:
            losses_decode = self.loss_decode
        for loss_decode in losses_decode:
            if loss_decode.loss_name not in loss:
                loss[loss_decode.loss_name] = loss_decode(
                    seg_logit,
                    seg_label,
                    weight=seg_weight,
                    ignore_index=self.ignore_index)
            else:
                loss[loss_decode.loss_name] += loss_decode(
                    seg_logit,
                    seg_label,
                    weight=seg_weight,
                    ignore_index=self.ignore_index)

        loss['acc_seg'] = accuracy(
            seg_logit, seg_label, ignore_index=self.ignore_index)
        return loss

所有新实现的解码头都应该从它派生。下面我们将使用PSPNet示例演示如何开发一个新的头部,如下所示。
首先,在mmseg/models/decode_heads/psp_head.py中添加一个新的解码头。PSPNet实现了一个用于分割解码的解码头。为了实现一个解码头,我们基本上需要实现以下三个新模块的功能。

@HEADS.register_module()
class PSPHead(BaseDecodeHead):

    def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs):
        super(PSPHead, self).__init__(**kwargs)

    def init_weights(self):

    def forward(self, inputs):

接下来,用户需要在mmseg/models/decode_heads/init.py中添加模块,这样相应的注册表就可以找到并加载它们。PSPNet的配置文件如下

norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
    type='EncoderDecoder',
    pretrained='pretrain_model/resnet50_v1c_trick-2cccc1ad.pth',
    backbone=dict(
        type='ResNetV1c',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        dilations=(1, 1, 2, 4),
        strides=(1, 2, 1, 1),
        norm_cfg=norm_cfg,
        norm_eval=False,
        style='pytorch',
        contract_dilation=True),
    decode_head=dict(
        type='PSPHead',
        in_channels=2048,
        in_index=3,
        channels=512,
        pool_scales=(1, 2, 3, 6),
        dropout_ratio=0.1,
        num_classes=19,
        norm_cfg=norm_cfg,
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))

3、添加新的损失

假设您想添加一个新的损失作为分割解码的MyLoss。要添加一个新的损失函数,用户需要在mmseg/models/losses/my_loss.py中实现它——decorator weighted_loss允许对每个元素的损失进行加权。

import torch
import torch.nn as nn

from ..builder import LOSSES
from .utils import weighted_loss

@weighted_loss
def my_loss(pred, target):
    assert pred.size() == target.size() and target.numel() > 0
    loss = torch.abs(pred - target)
    return loss

@LOSSES.register_module
class MyLoss(nn.Module):

    def __init__(self, reduction='mean', loss_weight=1.0):
        super(MyLoss, self).__init__()
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss = self.loss_weight * my_loss(
            pred, target, weight, reduction=reduction, avg_factor=avg_factor)
        return loss

然后用户需要将它添加到mmseg/models/losses/init_.py中。

from .my_loss import MyLoss, my_loss

要使用它,请修改loss_xxx字段。然后需要修改头部中的loss_decode字段。可以使用Loss_weight来平衡多个损失。

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2022年6月8日 下午12:07
下一篇 2022年6月8日 下午12:09

相关推荐