三维重建系统 | L3双视角运动恢复结构(SFM双目SFM)

一、三角量测

定义:给定图像匹配点和相机参数恢复匹配点三维坐标的问题 。

三维重建系统 | L3双视角运动恢复结构(SFM双目SFM)
由上图所示,由三维点坐标和一个相机内外参数可以确定一条射线,可能的目标三维点就在这条射线上,所以至少需要两个相机视角,并对两两相交得出的可能位置利用最小二乘法进行计算。
其中,第i相机投影矩阵:

请添加图片描述

另外,在第i个视角中投影的图像坐标为:

三维重建系统 | L3双视角运动恢复结构(SFM双目SFM)

三维重建系统 | L3双视角运动恢复结构(SFM双目SFM)
其中,Pin已知,也就是说一个观察点提供2个约束,所以至少2对点。即有:
三维重建系统 | L3双视角运动恢复结构(SFM双目SFM)
展开即为:
三维重建系统 | L3双视角运动恢复结构(SFM双目SFM)
最后进行SVD分解得到对应的特征点。

二、捆绑调整(BA)

定义:同时对相机内外参数以及三维点坐标同时进行非线性优化来得到一个全局意义上最优的解。
三维重建系统 | L3双视角运动恢复结构(SFM双目SFM)
假设这个场景中有n个三维点,有m个相机,但由于n个点在m个相机里不是都可见,所以由对应关系Xij(0或1)来控制,并对投影点进行优化。
三维重建系统 | L3双视角运动恢复结构(SFM双目SFM)
最终根据重新投影点 uij的不断靠近,来优化Cj(相机参数),Xi(三维点坐标)

于是,将该问题转换为了一个无约束非线性的优化问题

三维重建系统 | L3双视角运动恢复结构(SFM双目SFM)

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
上一篇 2022年6月13日 上午11:59
下一篇 2022年6月13日 下午12:01

相关推荐

本站注重文章个人版权,不会主动收集付费或者带有商业版权的文章,如果出现侵权情况只可能是作者后期更改了版权声明,如果出现这种情况请主动联系我们,我们看到会在第一时间删除!本站专注于人工智能高质量优质文章收集,方便各位学者快速找到学习资源,本站收集的文章都会附上文章出处,如果不愿意分享到本平台,我们会第一时间删除!