YOLOv5/v7 更换激活函数

YOLOv5/v7 如何更换激活函数?

更新日志:2022/5/8日添加了Conv(nn.Module)代码块,对如何更换激活函数做了更加详细的说明

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站

1.1 激活函数更换方法🍀

(1)找到activations.py,部分激活函数代码写在了activations.py 文件里。
在这里插入图片描述

打开后就可以看到很多种写好的激活函数,有些激活函数是torch.nn里面自带的,用的时候直接使用nn.调用就行,不用在这个文件里面再写一遍了。

在这里插入图片描述

(2)如果要进行修改可以去common.py文件里修改。

在这里插入图片描述

在你想改动的模块里面直接更换就行,我下面把所有的激活函数都写好了,用的时候直接选择注释就行了 。

在这里插入图片描述

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        #self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.Identity() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.Tanh() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.Sigmoid() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.ReLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.LeakyReLU(0.1) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.Hardswish() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = Mish() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = FReLU(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = AconC(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        self.act = MetaAconC(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = SiLU_beta(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        #self.act = FReLU_noBN_biasFalse(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = FReLU_noBN_biasTrue(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

在这里插入图片描述

下面展示一些主流的的激活函数及图像。

1.2 激活函数介绍💡(持续更新中,以后会放上最新paper的复现结果)

1.2.1 SiLU

SiLU优点:

  1. 无上界(避免过拟合);
  2. 有下界(产生更强的正则化效果);
  3. 平滑(处处可导 更容易训练);
  4. x<0具有非单调性(对分布有重要意义 这点也是SwishReLU的最大区别)。
# SiLU https://arxiv.org/pdf/1606.08415.pdf 
class SiLU(nn.Module):  # export-friendly version of nn.SiLU()
    @staticmethod
    def forward(x):
        return x * torch.sigmoid(x)

在这里插入图片描述

1.2.2 Hardswish

class Hardswish(nn.Module):  # export-friendly version of nn.Hardswish()
    @staticmethod
    def forward(x):
        # return x * F.hardsigmoid(x)  # for TorchScript and CoreML
        return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0  # for TorchScript, CoreML and ONNX

在这里插入图片描述

1.2.3 Mish

Mish特点:

  1. 无上界,非饱和,避免了因饱和而导致梯度为0(梯度消失/梯度爆炸),进而导致训练速度大大下降;
  2. 有下界,在负半轴有较小的权重,可以防止ReLU函数出现的神经元坏死现象;同时可以产生更强的正则化效果;
  3. 自身本就具有自正则化效果,可以使梯度和函数本身更加平滑,且是每个点几乎都是平滑的,这就更容易优化而且也可以更好的泛化。随着网络越深,信息可以更深入的流动;
  4. x<0,保留了少量的负信息,避免了ReLUDying ReLU现象,这有利于更好的表达和信息流动;
  5. 连续可微,避免奇异点;
  6. 非单调。
# Mish https://github.com/digantamisra98/Mish 
class Mish(nn.Module):
    @staticmethod
    def forward(x):
        return x * F.softplus(x).tanh()

在这里插入图片描述

1.2.4 MemoryEfficientMish

一种高效的Mish激活函数 不采用自动求导(自己写前向传播和反向传播) 更高效,Mish的升级版。

class MemoryEfficientMish(nn.Module):
    class F(torch.autograd.Function):
        @staticmethod
        def forward(ctx, x):
            ctx.save_for_backward(x)
            return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + exp(x)))

        @staticmethod
        def backward(ctx, grad_output):
            x = ctx.saved_tensors[0]
            sx = torch.sigmoid(x)
            fx = F.softplus(x).tanh()
            return grad_output * (fx + x * sx * (1 - fx * fx))

    def forward(self, x):
        return self.F.apply(x)

1.2.5 FReLU

FReLU非线性激活函数,在只增加一点点的计算负担的情况下,将ReLUPReLU扩展成2D激活函数。具体的做法是将max()函数内的条件部分(原先ReLUx<0部分)换成了2D的漏斗条件,解决了激活函数中的空间不敏感问题,使规则(普通)的卷积也具备捕获复杂的视觉布局能力,使模型具备像素级建模的能力。

# FReLU https://arxiv.org/abs/2007.11824
class FReLU(nn.Module):
    def __init__(self, c1, k=3):  # ch_in, kernel
        super().__init__()
        self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
        self.bn = nn.BatchNorm2d(c1)

    def forward(self, x):
        return torch.max(x, self.bn(self.conv(x)))

在这里插入图片描述

在这里插入图片描述

1.2.6 AconC

这是2021年新出的一个激活函数,先从ReLU函数出发,采用Smoth maximum近似平滑公式证明了Swish就是ReLU函数的近似平滑表示,这也算提出一种新颖的Swish函数解释。之后进一步分析ReLU的一般形式Maxout系列激活函数,再次利用Smoth maximumMaxout系列扩展得到简单且有效的ACON系列激活函数:ACON-AACON-BACON-C。最终提出meta-ACON,动态的学习(自适应)激活函数的线性/非线性,显著提高了表现。

细节请看这位大佬的文章

class AconC(nn.Module):
    r""" ACON activation (activate or not).
    AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
    """

    def __init__(self, c1):
        super().__init__()
        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))

    def forward(self, x):
        dpx = (self.p1 - self.p2) * x
        return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x

在这里插入图片描述

1.2.7 MetaAconC

上面那个的不同版本

class MetaAconC(nn.Module):
    r""" ACON activation (activate or not).
    MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
    """

    def __init__(self, c1, k=1, s=1, r=16):  # ch_in, kernel, stride, r
        super().__init__()
        c2 = max(r, c1 // r)
        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
        self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
        # self.bn1 = nn.BatchNorm2d(c2)
        # self.bn2 = nn.BatchNorm2d(c1)

    def forward(self, x):
        y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
        # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
        # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstable
        beta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removed
        dpx = (self.p1 - self.p2) * x
        return dpx * torch.sigmoid(beta * dpx) + self.p2 * x

最后再放一张常见激活函数的图
在这里插入图片描述

前沿paper的激活函数复现 持续更新中。。。。

本人更多YOLOv5实战内容导航🍀🌟🚀

  1. 手把手带你调参Yolo v5 (v6.2)(推理)🌟强烈推荐

  2. 手把手带你调参Yolo v5 (v6.2)(训练)🚀

  3. 手把手带你调参Yolo v5 (v6.2)(验证)

  4. 如何快速使用自己的数据集训练Yolov5模型

  5. 手把手带你Yolov5 (v6.2)添加注意力机制(一)(并附上30多种顶会Attention原理图)🌟强烈推荐🍀新增8种

  6. 手把手带你Yolov5 (v6.2)添加注意力机制(二)(在C3模块中加入注意力机制)

  7. Yolov5如何更换激活函数?

  8. Yolov5如何更换BiFPN?

  9. Yolov5 (v6.2)数据增强方式解析

  10. Yolov5更换上采样方式( 最近邻 / 双线性 / 双立方 / 三线性 / 转置卷积)

  11. Yolov5如何更换EIOU / alpha IOU / SIoU?

  12. Yolov5更换主干网络之《旷视轻量化卷积神经网络ShuffleNetv2》

  13. YOLOv5应用轻量级通用上采样算子CARAFE

  14. 空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC🚀

  15. 用于低分辨率图像和小物体的模块SPD-Conv

  16. GSConv+Slim-neck 减轻模型的复杂度同时提升精度🍀

  17. 头部解耦 | 将YOLOX解耦头添加到YOLOv5 | 涨点杀器🍀

  18. Stand-Alone Self-Attention | 搭建纯注意力FPN+PAN结构🍀

  19. YOLOv5模型剪枝实战🚀

  20. YOLOv5知识蒸馏实战🚀

  21. YOLOv7知识蒸馏实战🚀

  22. 改进YOLOv5 | 引入密集连接卷积网络DenseNet思想 | 搭建密集连接模块🍀

有问题欢迎大家指正,如果感觉有帮助的话请点赞支持下👍📖🌟

请添加图片描述

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
上一篇 2023年2月23日 下午1:30
下一篇 2023年2月23日 下午1:31

相关推荐