YOLO V5源码详解

1.数据读取

        首先读取图片以及标签路径,并将标签存入缓存,对单标签情况、特定类别、以及是否保持长方形等情况分别进行处理。

        如果需要进行mosaic 数据增强,首先找到中心点,将图片分别放置于四个位置,进行裁剪或者拼接以适应,并对labels进行调整。同时,对进行过mosaic数据增强过的图像,再进行copy_paste数据增强和旋转、平移、缩放数据增强。

         同时,还可以进行其他数据增强方式,比如mix up,hsv等

YOLO V5源码详解

 代码如下:

class LoadImagesAndLabels(Dataset):
    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
    cache_version = 0.6  # dataset labels *.cache version
    rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]

    def __init__(self,
                 path,
                 img_size=640,
                 batch_size=16,
                 augment=False,
                 hyp=None,
                 rect=False,
                 image_weights=False,
                 cache_images=False,  # 缓存图片
                 single_cls=False,
                 stride=32,
                 pad=0.0,
                 prefix=''):
        self.img_size = img_size
        self.augment = augment
        self.hyp = hyp
        self.image_weights = image_weights
        self.rect = False if image_weights else rect
        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
        self.mosaic_border = [-img_size // 2, -img_size // 2] # 拼接过程中按照什么中心点进行拼接
        self.stride = stride
        self.path = path
        self.albumentations = Albumentations() if augment else None

        try:
            f = []  # image files
            for p in path if isinstance(path, list) else [path]:  # window和linux
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / '**' / '*.*'), recursive=True) # 获取指定路径
                    # f = list(p.rglob('*.*'))  # pathlib
                elif p.is_file():  # file
                    with open(p) as t:
                        t = t.read().strip().splitlines() # 读取图片路径
                        parent = str(p.parent) + os.sep  # 指定系统分隔符
                        # 相对地址转绝对地址
                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path
                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
                else:
                    raise FileNotFoundError(f'{prefix}{p} does not exist')
            self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS) # 排序
            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
            assert self.im_files, f'{prefix}No images found'
        except Exception as e:
            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')

        # Check cache
        self.label_files = img2label_paths(self.im_files)  # labels
        # 设置缓存
        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
        try:
            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
            assert cache['version'] == self.cache_version  # matches current version
            assert cache['hash'] == get_hash(self.label_files + self.im_files)  # identical hash
        except Exception:
            cache, exists = self.cache_labels(cache_path, prefix), False  # run cache ops

        # Display cache
        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupt, total
        if exists and LOCAL_RANK in {-1, 0}:
            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
            tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT)  # display cache results
            if cache['msgs']:
                LOGGER.info('\n'.join(cache['msgs']))  # display warnings
        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'

        # Read cache
        [cache.pop(k) for k in ('hash', 'version', 'msgs')]  # remove items 去除不需要的信息
        labels, shapes, self.segments = zip(*cache.values())
        self.labels = list(labels) # 标签信息
        self.shapes = np.array(shapes, dtype=np.float64) # 图片大小
        self.im_files = list(cache.keys())  # update 图片文件名称
        self.label_files = img2label_paths(cache.keys())  # update 标签文件名称
        n = len(shapes)  # number of images
        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index
        nb = bi[-1] + 1  # number of batches
        self.batch = bi  # batch index of image
        self.n = n
        self.indices = range(n) # 索引

        # Update labels 筛选标签以仅包括这些类(可选)
        include_class = []  # filter labels to include only these classes (optional)
        include_class_array = np.array(include_class).reshape(1, -1)
        for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
            if include_class:
                j = (label[:, 0:1] == include_class_array).any(1)
                self.labels[i] = label[j]
                if segment:
                    self.segments[i] = segment[j]
            if single_cls:  # single-class training, merge all classes into 0
                self.labels[i][:, 0] = 0
                if segment:
                    self.segments[i][:, 0] = 0

        # Rectangular Training
        if self.rect:
            # Sort by aspect ratio
            s = self.shapes  # wh
            ar = s[:, 1] / s[:, 0]  # aspect ratio
            irect = ar.argsort()
            self.im_files = [self.im_files[i] for i in irect]
            self.label_files = [self.label_files[i] for i in irect]
            self.labels = [self.labels[i] for i in irect]
            self.shapes = s[irect]  # wh
            ar = ar[irect]

            # Set training image shapes
            shapes = [[1, 1]] * nb
            for i in range(nb):
                ari = ar[bi == i]
                mini, maxi = ari.min(), ari.max()
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]

            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride

        # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
        # 将图像缓存到RAM/磁盘中以加快训练(警告:大型数据集可能超过系统资源)
        self.ims = [None] * n
        self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
        if cache_images:
            gb = 0  # Gigabytes of cached images
            self.im_hw0, self.im_hw = [None] * n, [None] * n
            fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
            results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
            pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT, disable=LOCAL_RANK > 0)
            for i, x in pbar:
                if cache_images == 'disk':
                    gb += self.npy_files[i].stat().st_size
                else:  # 'ram'
                    self.ims[i], self.im_hw0[i], self.im_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
                    gb += self.ims[i].nbytes
                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
            pbar.close()

    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
        # Cache dataset labels, check images and read shapes
        x = {}  # dict
        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
        desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
        with Pool(NUM_THREADS) as pool:
            pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
                        desc=desc,
                        total=len(self.im_files),
                        bar_format=BAR_FORMAT)
            for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
                nm += nm_f
                nf += nf_f
                ne += ne_f
                nc += nc_f
                if im_file:
                    x[im_file] = [lb, shape, segments]
                if msg:
                    msgs.append(msg)
                pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"

        pbar.close()
        if msgs:
            LOGGER.info('\n'.join(msgs))
        if nf == 0:
            LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
        x['hash'] = get_hash(self.label_files + self.im_files)
        x['results'] = nf, nm, ne, nc, len(self.im_files)
        x['msgs'] = msgs  # warnings
        x['version'] = self.cache_version  # cache version
        try:
            np.save(path, x)  # save cache for next time
            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
            LOGGER.info(f'{prefix}New cache created: {path}')
        except Exception as e:
            LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')  # not writeable
        return x

    def __len__(self):
        return len(self.im_files)

    # def __iter__(self):
    #     self.count = -1
    #     print('ran dataset iter')
    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
    #     return self

    def __getitem__(self, index):
        index = self.indices[index]  # linear, shuffled, or image_weights

        hyp = self.hyp
        mosaic = self.mosaic and random.random() < hyp['mosaic']
        if mosaic:
            # Load mosaic  mosaic数据增强
            img, labels = self.load_mosaic(index)
            shapes = None

            # MixUp augmentation
            if random.random() < hyp['mixup']:
                img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))

        else:
            # 不进行mosaic的操作
            # Load image
            img, (h0, w0), (h, w) = self.load_image(index)

            # Letterbox
            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling

            labels = self.labels[index].copy()
            if labels.size:  # normalized xywh to pixel xyxy format
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])

            if self.augment:
                img, labels = random_perspective(img,
                                                 labels,
                                                 degrees=hyp['degrees'],
                                                 translate=hyp['translate'],
                                                 scale=hyp['scale'],
                                                 shear=hyp['shear'],
                                                 perspective=hyp['perspective'])

        nl = len(labels)  # number of labels
        if nl:
            # x1,y1,x2,y2 转换为x,y,w,h
            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)

        if self.augment:
            # Albumentations 数据增强
            img, labels = self.albumentations(img, labels)
            nl = len(labels)  # update after albumentations

            # HSV color-space
            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])

            # Flip up-down  翻转操作
            if random.random() < hyp['flipud']:
                img = np.flipud(img)
                if nl:
                    labels[:, 2] = 1 - labels[:, 2]

            # Flip left-right
            if random.random() < hyp['fliplr']:
                img = np.fliplr(img)
                if nl:
                    labels[:, 1] = 1 - labels[:, 1]

            # Cutouts
            # labels = cutout(img, labels, p=0.5)
            # nl = len(labels)  # update after cutout

        labels_out = torch.zeros((nl, 6))
        if nl:
            labels_out[:, 1:] = torch.from_numpy(labels)

        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        # ascontiguousarray函数将一个内存不连续存储的数组转换为内存连续存储的数组,使得运行速度更快
        img = np.ascontiguousarray(img)

        return torch.from_numpy(img), labels_out, self.im_files[index], shapes

    def load_image(self, i):
        # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
        im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
        if im is None:  # not cached in RAM
            if fn.exists():  # load npy
                im = np.load(fn)
            else:  # read image
                im = cv2.imread(f)  # BGR
                assert im is not None, f'Image Not Found {f}'
            h0, w0 = im.shape[:2]  # orig hw
            r = self.img_size / max(h0, w0)  # ratio
            if r != 1:  # if sizes are not equal
                interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA   # 插值方式
                im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=interp)
            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
        else:
            return self.ims[i], self.im_hw0[i], self.im_hw[i]  # im, hw_original, hw_resized

    def cache_images_to_disk(self, i):
        # Saves an image as an *.npy file for faster loading
        f = self.npy_files[i]
        if not f.exists():
            np.save(f.as_posix(), cv2.imread(self.im_files[i]))

    def load_mosaic(self, index):
        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
        labels4, segments4 = [], []
        s = self.img_size
        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
        random.shuffle(indices)
        for i, index in enumerate(indices):
            # Load image  加载图片,并将长边resize成(640,640)
            img, _, (h, w) = self.load_image(index)

            # place img in img4
            if i == 0:  # top left
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            # Labels
            labels, segments = self.labels[index].copy(), self.segments[index].copy()
            if labels.size:
                # 将xywh转换为x1,y1,x2,y2并加上padw,padh
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
            labels4.append(labels)
            segments4.extend(segments)

        # Concat/clip labels  将标签限制在0,2s
        labels4 = np.concatenate(labels4, 0)
        for x in (labels4[:, 1:], *segments4):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img4, labels4 = replicate(img4, labels4)  # replicate

        # Augment
        # copy_pase数据增强
        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
        # 数据增强,旋转、平移、缩放
        img4, labels4 = random_perspective(img4,
                                           labels4,
                                           segments4,
                                           degrees=self.hyp['degrees'],
                                           translate=self.hyp['translate'],
                                           scale=self.hyp['scale'],
                                           shear=self.hyp['shear'],
                                           perspective=self.hyp['perspective'],
                                           border=self.mosaic_border)  # border to remove

        return img4, labels4

    def load_mosaic9(self, index):
        # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
        labels9, segments9 = [], []
        s = self.img_size
        indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
        random.shuffle(indices)
        hp, wp = -1, -1  # height, width previous
        for i, index in enumerate(indices):
            # Load image
            img, _, (h, w) = self.load_image(index)

            # place img in img9
            if i == 0:  # center
                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                h0, w0 = h, w
                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
            elif i == 1:  # top
                c = s, s - h, s + w, s
            elif i == 2:  # top right
                c = s + wp, s - h, s + wp + w, s
            elif i == 3:  # right
                c = s + w0, s, s + w0 + w, s + h
            elif i == 4:  # bottom right
                c = s + w0, s + hp, s + w0 + w, s + hp + h
            elif i == 5:  # bottom
                c = s + w0 - w, s + h0, s + w0, s + h0 + h
            elif i == 6:  # bottom left
                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
            elif i == 7:  # left
                c = s - w, s + h0 - h, s, s + h0
            elif i == 8:  # top left
                c = s - w, s + h0 - hp - h, s, s + h0 - hp

            padx, pady = c[:2]
            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords

            # Labels
            labels, segments = self.labels[index].copy(), self.segments[index].copy()
            if labels.size:
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
            labels9.append(labels)
            segments9.extend(segments)

            # Image
            img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
            hp, wp = h, w  # height, width previous

        # Offset
        yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border)  # mosaic center x, y
        img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]

        # Concat/clip labels
        labels9 = np.concatenate(labels9, 0)
        labels9[:, [1, 3]] -= xc
        labels9[:, [2, 4]] -= yc
        c = np.array([xc, yc])  # centers
        segments9 = [x - c for x in segments9]

        for x in (labels9[:, 1:], *segments9):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img9, labels9 = replicate(img9, labels9)  # replicate

        # Augment
        img9, labels9 = random_perspective(img9,
                                           labels9,
                                           segments9,
                                           degrees=self.hyp['degrees'],
                                           translate=self.hyp['translate'],
                                           scale=self.hyp['scale'],
                                           shear=self.hyp['shear'],
                                           perspective=self.hyp['perspective'],
                                           border=self.mosaic_border)  # border to remove

        return img9, labels9

    @staticmethod
    def collate_fn(batch):
        im, label, path, shapes = zip(*batch)  # transposed
        for i, lb in enumerate(label):
            lb[:, 0] = i  # add target image index for build_targets()
        return torch.stack(im, 0), torch.cat(label, 0), path, shapes

    @staticmethod
    def collate_fn4(batch):
        img, label, path, shapes = zip(*batch)  # transposed
        n = len(shapes) // 4
        im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]

        ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
        wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
        s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]])  # scale
        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
            i *= 4
            if random.random() < 0.5:
                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
                                   align_corners=False)[0].type(img[i].type())
                lb = label[i]
            else:
                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
                lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
            im4.append(im)
            label4.append(lb)

        for i, lb in enumerate(label4):
            lb[:, 0] = i  # add target image index for build_targets()

        return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4

2.模型配置文件读取 

        depth_multiple表示网络的深度,表示在网络层的数量,非1的层乘以该系数,width_multiple表示网络的深度,网络最终的输出通道数乘以该系数即可得到网络的最终通道数。YOLO提供了不同版本的模型,对于不同版本的模型,最大的不同的在于以上两个系数。

        anchor表示网络的先验框

        对于网络参数,from表示输入来自于哪一层的输出,number表示网络层的层数,module表示网络层的名称。args表示网络的超参数。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

读取代码:

def parse_model(d, ch):  # model_dict, input_channels(3)
    # ch (list):表示各层输出通道数
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}") # 打印表头
    # 读取相应数据 anchors:锚框,nc:类别 gd:深度系数 gw 宽度系数
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8) # 输出通道

            args = [c1, c2, *args[1:]] # 更新配置参数
            # 对应层需要重复
            if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]] # batch_normal层,上一层的输出维度
        elif m is Concat:
            c2 = sum(ch[x] for x in f) # concat层:通道数之和
        elif m is Detect:
            args.append([ch[x] for x in f])  # detect:通道数之和
            if isinstance(args[1], int):  # 整数表示number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f) # 初始化一个anchors矩阵
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]
        # 构建对应层的模型
        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        # 保存不等于-1的x的x%i
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

 3.网络结构(yolox.pt)

(1)前两层

        网络前两层一层为6*6的卷积,strides为2,padding为(2,2),第二层为3*3的卷积,strides为2,padding为2,特征维度变换为3*640*640–>80*320*320–>160*160*160

(2) C3模块

        C3层有两个路径,第一个短路径, 只有一个1*1的卷积,将特征图从c1降维成c1*e,第二条路径是n个bottleneck模块,每个bottomneck包含两个卷积,第一个卷积为1*1的卷积,将通道数降维成c1–>c1*e,第二层为3*3的卷积,将通道数由c1*e–>c2,最后再做一层3*3的卷积,调整通道数。其中,bottleneck都采用残差连接。经过c3模块,特征图大小不变,通道数由c1变成c2,最后,再经过3*3的卷积,将特征图大小减半。

        YOLO V5源码详解

 (3)SPPF模块

        SPPF是SPP的快速版本,有四条路径,第一条路径,1*1的卷积,将特征图通道数由c1变成c1//2【1】,第二条路径,对【1】的结果经过5*5的最大池化,pading为2【2】,第三条路径,对【2】的结果,经过5*5的最大池化,pading为2【3】,第四条路径,经过 5*5的最大池化,pad为2【4】。将四条路径的结果融合,再做一层1*1的卷积。

YOLO V5源码详解

 4.PAN流程

        PAN实现了双向通信,将高维特征与低维特征进行融合,三个特征图大小分别下采样8倍,16倍和32倍。首先,将高维特征进行上采样,与低维特征融合,然后再通过卷积实现从低维特征到高维特征的融合 

YOLO V5源码详解

        假设网络输入为256*256,网络各层输出如下:对于上采样部分,

        对于缩小32倍的特征图:将第10层输出进行上采样后,与第6层输出concat,输出大小为1,1280,16,16【1】

        对于缩小8倍的特征图,将【1】的结果,经过一层C3层,此时维度变为:将通道数由1280变为640,再经过一层卷积层,将通道数变为320,再经过上采样,与第四层的结果相连接,输出维度为1,640,32,32【2】

        下采样部分:

        对于【2】,首先,经过一层C3层,将维度变为1,320,32,32,然后经过一层3*3的卷积,与第14层的结果相连,即【1】经过C3和1*1的卷积后的结果相连,维度为1,640,16,16。【3】

        对于【3】,经过一层C3层和1*1的卷积,通道数保持不变,与第10层的结果相连,即为32层特征图上采样之前的结果。此时特征图为1,1280,8,8,再经过一层C3模块。【4】

        对于【2】【3】【4】层结果,分别做预测  

models.common.Conv 网络层数  0 输出: torch.Size([1, 80, 128, 128])
models.common.Conv 网络层数  1 输出: torch.Size([1, 160, 64, 64])
models.common.C3 网络层数  2 输出: torch.Size([1, 160, 64, 64])
models.common.Conv 网络层数  3 输出: torch.Size([1, 320, 32, 32])
models.common.C3 网络层数  4 输出: torch.Size([1, 320, 32, 32])
models.common.Conv 网络层数  5 输出: torch.Size([1, 640, 16, 16])
models.common.C3 网络层数  6 输出: torch.Size([1, 640, 16, 16])
models.common.Conv 网络层数  7 输出: torch.Size([1, 1280, 8, 8])
models.common.C3 网络层数  8 输出: torch.Size([1, 1280, 8, 8])
models.common.SPPF 网络层数  9 输出: torch.Size([1, 1280, 8, 8])
models.common.Conv 网络层数  10 输出: torch.Size([1, 640, 8, 8])
torch.nn.modules.upsampling.Upsample 网络层数  11 输出: torch.Size([1, 640, 16, 16])
models.common.Concat 网络层数  12 输出: torch.Size([1, 1280, 16, 16])
models.common.C3 网络层数  13 输出: torch.Size([1, 640, 16, 16])
models.common.Conv 网络层数  14 输出: torch.Size([1, 320, 16, 16])
torch.nn.modules.upsampling.Upsample 网络层数  15 输出: torch.Size([1, 320, 32, 32])
models.common.Concat 网络层数  16 输出: torch.Size([1, 640, 32, 32])
models.common.C3 网络层数  17 输出: torch.Size([1, 320, 32, 32])
models.common.Conv 网络层数  18 输出: torch.Size([1, 320, 16, 16])
models.common.Concat 网络层数  19 输出: torch.Size([1, 640, 16, 16])
models.common.C3 网络层数  20 输出: torch.Size([1, 640, 16, 16])
models.common.Conv 网络层数  21 输出: torch.Size([1, 640, 8, 8])
models.common.Concat 网络层数  22 输出: torch.Size([1, 1280, 8, 8])
models.common.C3 网络层数  23 输出: torch.Size([1, 1280, 8, 8])

代码如下:

class Model(nn.Module):
    # YOLOv5 model
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        # 根据参数、构建模型  self.save:保留需要连接的层
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            # ch:input channels s:
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            check_anchor_order(m)  # must be in pixel-space (not grid-space) 检查顺序是否正确
            m.anchors /= m.stride.view(-1, 1, 1) # 各特征层的anchors
            self.stride = m.stride # [8,16,32]
            self._initialize_biases()  # only run once

        # Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        if augment:
            return self._forward_augment(x)  # augmented inference, None
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            print(m.type,"网络层数 ",m.i,"输出:",x.shape)
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y

    def _profile_one_layer(self, m, x, dt):
        c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1).detach()  # conv.bias(255) to (3,85)
            b[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    def _print_biases(self):
        m = self.model[-1]  # Detect() module
        for mi in m.m:  # from
            b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
            LOGGER.info(
                ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

    # def _print_weights(self):
    #     for m in self.model.modules():
    #         if type(m) is Bottleneck:
    #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

4.训练参数解释 

 

--weights:初始权重
--cfg:模型配置文件
--data:数据配置文件
--hyp:学习率等超参数文件
--epochs:迭代次数
-imgsz:图像大小
--rect:长方形训练策略,不resize成正方形
--resume:恢复最近的培训,从last.pt开始
--nosave:只保存最后的检查点
--noval:仅在最后一次epochs进行验证
--noautoanchor:禁用AutoAnchor
--noplots:不保存打印文件
--evolve:为x个epochs进化超参数
--bucket:上传操作
--cache:在ram或硬盘中缓存数据
--image-weights:使用加权图像选择进行训练(类别加权)
--single-cls:单类别标签置0 
--device:gpu设置  
--multi-scale:改变img大小+/-50%,能够被32整除
--optimizer:学习率优化器
--sync-bn:使用SyncBatchNorm,仅在DDP模式中支持,跨gpu时使用
--workers:最大 dataloader 的线程数 (per RANK in DDP mode)
--project:保存文件的地址
--name:保存日志文件的名称
----exist-ok:现有项目/名称确定,不递增
--quad
--cos-lr:余弦学习率调度
--label-smoothing:
--patience:经过多少个epoch损失不再下降,就停止迭代
--freeze:迁移学习,冻结训练
--save-period:每x个周期保存一个检查点(如果<1,则禁用)
--seed:
--local_rank:gpu编号

 

       

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
扎眼的阳光的头像扎眼的阳光普通用户
上一篇 2023年2月25日 下午2:45
下一篇 2023年2月25日 下午2:46

相关推荐