一、前言
环境:
windows11 64位
Python3.9
MySQL8
pandas1.4.2
本文主要介绍 MySQL 中的日期函数date_add()/date_sub()
、date_format()
、year()/month()/day()/hour()/minute()/second()
、datediff()
、datepart()
、from_unixtime()
、unix_timestamp()
如何使用pandas实现,同时二者又有什么区别。
注:Python是很灵活的语言,达成同一个目标或有多种途径,我提供的只是其中一种解决方法,大家有其他的方法也欢迎留言讨论。
二、语法对比
数据表
本次使用的数据如下。
使用 Python 构建该数据集的语法如下:
import pandas as pd
import numpy as np
df1 = pd.DataFrame({ 'col1' : list(range(1,7))
,'col2' : ['AA','AA','AA','BB','AA','BB']#list('AABCA')
,'col3' : ['2022-01-01','2022-01-01','2022-01-02','2022-01-02','2022-01-03','2022-01-03']
,'col4' : ['2022-02-01','2022-01-21','2022-01-23','2022-01-12','2022-02-03','2022-01-05']
,'col5' : [1643673600,1642723200,1642896000,1641945600,1643846400,1641340800]
})
df1['col3'] = pd.to_datetime(df1.col3)
df1['col4'] = pd.to_datetime(df1.col4)
df1
注:直接将代码放 jupyter 的 cell 跑即可。后文都直接使用
df1
调用对应的数据。
使用 MySQL 构建该数据集的语法如下:
with t1 as(
select 1 as col1, 'AA' as col2, '2022-01-01' as col3, '2022-02-01' as col4, 1643673600 as col5 union all
select 2 as col1, 'AA' as col2, '2022-01-01' as col3, '2022-01-21' as col4, 1642723200 as col5 union all
select 3 as col1, 'AA' as col2, '2022-01-02' as col3, '2022-01-23' as col4, 1642896000 as col5 union all
select 4 as col1, 'BB' as col2, '2022-01-02' as col3, '2022-01-12' as col4, 1641945600 as col5 union all
select 5 as col1, 'AA' as col2, '2022-01-03' as col3, '2022-02-03' as col4, 1643846400 as col5 union all
select 6 as col1, 'BB' as col2, '2022-01-03' as col3, '2022-01-05' as col4, 1641340800 as col5
)
select * from t1;
注:直接将代码放 MySQL 代码运行框跑即可。后文跑 SQL 代码时,默认带上数据集(代码的1~8行),仅展示查询语句,如第9行。
对应关系如下:
Python 数据集 | MySQL 数据集 |
---|---|
df1 | t1 |
date_add()/date_sub()
时间的加减,在 MySQL 中,使用的是date_add()/date_sub()
来实现,二者可以替换使用,只要对相加/减的时间加上负号即可(详见后面例子)。
而在 Pandas 中,可以通过Timedelta()
或DateOffset()
实现,二者有差异,如果是针对月份和年度计算差值,只能使用后者;如果是计算日、时、分、秒,则二者通用。
时间范围对应的语法参数见下表:
时间范围 | date_add()/date_sub() | pandas.Timedelta() | pandas.DateOffset() |
---|---|---|---|
年 | year | – | years |
月 | month | – | months |
日 | day | days | days |
时 | hour | hours | hours |
分 | minute | minutes | minutes |
秒 | second | seconds | seconds |
1、增加1天
MySQL 增加 1 天,可以使用date_add()+1 day
或者用date_sub()-1 day
。
Pandas 中,可以使用 DateFrame 时间列直接加上pd.Timedelta(days=1)
或者pd.DateOffset(days=1)
。
语言 | Python | MySQL |
---|---|---|
代码 | 【Python1】 df1.col3 + pd.Timedelta(days=1) 【Python2】 df1.col3 + pd.DateOffset(days=1) |
【MySQL1】 select date_add(t1.col3,interval 1 day) as col3_1 from t1; 【MySQL2】 select date_sub(t1.col3,interval -1 day) as col3_1 from t1; |
结果 |
2、减掉1天
语言 | Python | MySQL |
---|---|---|
代码 | 【Python1】 df1.col3 + pd.Timedelta(days=-1) 【Python2】 df1.col3 + pd.DateOffset(days=-1) |
【MySQL1】 select date_add(t1.col3,interval -1 day) as col3_1 from t1; 【MySQL2】 select date_sub(t1.col3,interval 1 day) as col3_1 from t1; |
结果 |
datediff()
计算时间的差值,在 MySQL 中,使用datediff(<被减数>,<减数>)
(即<被减数>-<减数>)实现;而在 Pandas 中,操作相对简单,两个 Series 相减即可。但是相减之后的数据类型是timedelta64[ns]
,如果要用于比较大小,或需要转化为整数,将timedelta64[ns]
的数值提取出来,提取数值可以使用其属性days
并借助apply()
实现,具体代码逻辑见以下例子。
语言 | Python | MySQL |
---|---|---|
代码 | (df1.col4-df1.col3).apply(lambda x:x.days) | select datediff(col4,col3) as diff from t1; |
结果 |
date_format()
格式设置,在 MySQL 中,使用date_format()
,在 Python 中,使用strftime()
,二者都是将时间类型转化为字符串类型。标识符有一点差异,前者的分使用%i
,秒使用%s
,而后者分使用%M
,秒使用%S
。
具体格式参考下表:
时间范围(示例) | date_format() | strftime() |
---|---|---|
年,0000~9999 | %Y | %Y |
月,01~12 | %m | %m |
日,01~31 | %d | %d |
时,00~24 | %H | %H |
分,00~59 | %i | %M |
秒,00~59 | %s | %S |
格式化为:年份-月份
MySQL 直接使用date_format(列,"<格式符号>")
函数套用即可;而 Python 中,由于strftime('<格式符号>')
是作用于时间类型,而df1.col3
是 Series 类型,所以需要使用apply()
来辅助处理每一个值(如下 Python 代码)。
语言 | Python | MySQL |
---|---|---|
代码 | df1.col3.apply(lambda x:x.strftime(‘%Y-%m’)) | select date_format(t1.col3,‘%Y-%m’) as col3_1 from t1; |
结果 |
year()/month()/day()/hour()/minute()/second()
取时间的某一部分(如:年、月、日、时、分、秒),在 MySQL 中,直接使用对应的函数作用于字段即可。
在 Python 中,时间类型的值也有对应的属性可以获取到对应的值,同样地,由于df1.col3
是 Series 类型,所以需要使用apply()
来辅助处理每一个值(如下 Python 代码)。
语言 | Python | MySQL |
---|---|---|
代码 | df_timepart = pd.concat([ df1.col4.apply(lambda x:x.year) ,df1.col4.apply(lambda x:x.month) ,df1.col4.apply(lambda x:x.day) ,df1.col4.apply(lambda x:x.hour) ,df1.col4.apply(lambda x:x.minute) ,df1.col4.apply(lambda x:x.second) ],axis=1 ) df_timepart.columns=[‘year’,‘month’,‘day’,‘hour’,‘minute’,‘second’] df_timepart |
select year(col4),month(col4),day(col4),hour(col4),minute(col4),second(col4) from t1; |
结果 |
from_unixtime()/unix_timestamp()
使用时间戳时,需要特别注意:pandas 采用的是 零时区的时间,MySQL 会默认当地时间,北京时间采用的是东八区,所以北京的时间会比零时区早8小时,也就是说,同一个时间戳,北京时间会比零时区时间多8小时,如:1577836800,转化为北京时间是【2020-01-01 08:00:00】,转化为零时区时间为【2020-01-01 00:00:00】。
1、时间戳转时间
时间戳转时间,在 MySQL 中,通过from_unixtime()
函数直接作用于列即可,还可以指定时间格式,格式化字符参考date_format()
中的表格。
在 Pandas 中,通过to_datetime()
实现,注意需要指定unit
,它根据时间戳的精度设置,常见参数有:【D,s,ms】,分别对应日数、秒数、毫秒数(相对1970-01-01 00:00:00的间隔数)。
注意:如果需要转化为东八区,只能通过手动添加 8 小时。
语言 | Python | MySQL |
---|---|---|
代码 | 【Python 1 默认时区】 pd.to_datetime(df1.col5, unit=‘s’) 【Python 2 东八时区】 pd.to_datetime(df1.col5, unit=‘s’)+pd.Timedelta(hours=8) |
select from_unixtime(col5) from t1; |
结果 |
2、时间转时间戳
时间转时间戳,在 MySQL 中,通过unix_timestamp()
函数直接作用于列即可。
在 Pandas 中,通过apply()+timestamp()
实现,如果需要转化为东八区,先对时间做一层tz_localize("Asia/Shanghai")
处理,然后再转化即可,返回的是浮点数。
注意:这里有一个小细节,由于返回的值默认是科学计数方式,而我需要查看完整数字串,而且没有小数值,我加了int()
处理。如果使用的时间精确到毫秒,即存在小数,加int()
处理会丢失精度,应用时需要结合自己的实际情况和需求做处理。
语言 | Python | MySQL |
---|---|---|
代码 | 【Python 1 默认时区】 df1.col4.apply(lambda x:int(x.timestamp())) 【Python 2 东八时区】 df1.col4.apply(lambda x:int(x.tz_localize(“Asia/Shanghai”).timestamp())) |
select unix_timestamp(col4) from t1; |
结果 |
三、小结
1、一个时间自定义加减使用Timedelta()
或DateOffset()
;
2、两个时间取差值直接相加减;
3、格式化使用strftime()
;
4、取时间的指定部分,使用对应的属性 year
、month
、day
、hour
、minute
、second
;
5、时间戳和时间的转化:to_datetime()
、timestamp()
。
到此这篇关于用Pandas 实现MySQL日期函数的效果的文章就介绍到这了,更多相关Pandas日期函数内容请搜索aitechtogether.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持aitechtogether.com!