站点图标 AI技术聚合

详解OpenCV-Python Bindings如何生成

目标

在本章中,将了解:

  • 如何生成OpenCV-Python bindings
  • 如何将新的OpenCV模块扩展到Python

OpenCV-Python bindings如何生成

在OpenCV中,所有算法均以C ++实现。但是这些算法可以以不同的语言(Python、Java等)中使用,这是通过绑定生成器(binding generator)实现的。这些生成器在C ++和Python之间建立了桥梁,使用户能够在Python中调用C ++函数。为了全面了解后台发生的事情,需要对Python/C API有充分的了解。在官方Python文档中可以找到一个有关将C ++函数扩展到Python的简单示例。因此,通过手动编写包装函数将OpenCV中的所有函数扩展到Python是一项耗时的任务。因此,OpenCV以更智能的方式进行操作。 OpenCV使用位于modules/python/src2 中的一些Python脚本,从C++头自动生成这些包装器函数。

首先, modules/python/CMakeFiles.txt 是一个CMake脚本,用于检查要扩展到Python的模块,它将自动检查所有要扩展的模块并获取其头文件。这些头文件包含该特定模块的所有类、函数、常量等的列表。

其次,将这些头文件传递到Python脚本 modules/python/src2/gen2.py 。这是Python Binding生成器脚本,它调用另一个Python脚本module/python/src2/hdr_parser.py ,这是头文件解析器脚本。

此头文件解析器将完整的头文件拆分为较小的Python列表。因此,这些列表包含有关特定函数、类等的所有详细信息。例如,将对一个函数进行解析以获取一个包含函数名称、返回类型、输入参数、参数类型等的列表。最终列表包含所有函数、枚举的详细信息,头文件中的structsclasss等。

但是头文件解析器不会解析标头文件中的所有函数/类,开发人员必须指定应将哪些函数导出到Python。为此,在这些声明的开头添加了某些宏,这些宏使头文件夹解析器可以标识要解析的函数。这些宏由对特定功能进行编程的开发人员添加。简而言之,开发人员决定哪些功能应该扩展到Python,哪些不应该。这些宏的详细信息将在下一个会话中给出。

因此头文件解析器将返回已解析函数的最终大列表。生成器脚本(gen2.py)将为头文件解析器解析的所有函数/类/枚举/结构创建包装函数(可以在编译期间在 build/modules/python/ 文件夹中以pyopencv_genic_*.h文件找到这些头文件)。但是可能会有一些基本的OpenCV数据类型,例如Mat、Vec4i、Size,它们需要手动扩展。例如,Mat类型应扩展为Numpy数组,Size应扩展为两个整数的元组等等。类似地,可能会有一些复杂的结构/类/函数等需要手动扩展。所有这些手动包装函数都放在 modules/python/src2/cv2.cpp 中。

所以现在剩下的就是这些包装文件的编译,这给了cv2模块。因此,当调用函数时,例如在Python中 res = equalizeHist(img1, img2) ,将传递两个numpy数组,并期望另一个numpy数组作为输出。因此,将这些numpy数组转换为cv::Mat,然后在C++中调用equalizeHist()函数。最终结果将res转换回Numpy数组。简而言之,几乎所有操作都是在C++中完成的,这使得Python几乎与C++具有相同的速度。

因此,这是OpenCV-Python bindings生成方式的基本形式。

注意

cv::Mat映射到numpy.ndarray可能是无法达到1:1的映射。例如,cv::MAT具有频道字段,它被仿真为Numpy.ndarray的最后一维并隐式转换。但是,这种隐式转换具有将3D Numpy阵列传递到C ++代码的问题(最后一维被隐式重新解释为频道)。如果需要使用频道处理3D阵列或ND-阵列,请参阅解决方法OpenCV 4.5.4+具有从Numpy.ndarray派生的cv.MAT包装器,明确地处理通道行为。

如何扩展新的模块到Python?

头文件解析器(Header parser )根据添加到函数声明中的一些包装宏来解析头文件。 枚举常量不需要任何包装宏,它们会自动包装。 但是其余的函数、类等需要包装宏。

使用CV_EXPORTS_W 宏扩展函数, 一个例子如下所示:

CV_EXPORTS_W void equalizeHist(InputArray src, OutputArray dst );

头文件解析器可以理解诸如InputArrayOutputArray等关键字的输入和输出参数。但是有时候,可能需要对输入和输出进行硬编码。 为此,使用了 CV_OUT , CV_IN_OUT 等宏。

CV_EXPORTS_W void minEnclosingCircle(
    InputArray points, CV_OUT Point2f& center, CV_OUT float& radius );

对于大类,也使用CV_EXPORTS_W。为了扩展类方法,使用CV_WRAP 。同样, CV_PROP 用于类字段。

class CV_EXPORTS_W CLAHE: public Algorithm
{
    public:
  		CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
    	CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
    	CV_WRAP virtual double getClipLimit() const = 0;
};

可以使用 CV_EXPORTS_AS 扩展重载的函数。 但是需要传递一个新名称以便在Python中使用该名称调用每个函数。 以下面的整数函数( integral function)为例,提供了三个函数,因此每个函数在Python中都带有一个后缀。 类似地, `CV_WRAP_AS 可用于包装重载方法。

CV_EXPORTS_W void integral(InputArray src, OutputArray sum, int sdepth=-1 );
CV_EXPORTS_AS(integral2) void integral(
    InputArray src, OutputArray sum, OutputArray sqsum, int sdepth=-1, int sqdepth=-1 );
CV_EXPORTS_AS(integral3) void integral(
    InputArray src, OutputArray sum, OutputArray sqsum, OutputArray tilted, int sdepth=-1, int sqdepth=-1 );

小的类/结构使用 CV_EXPORTS_W_SIMPLE 进行扩展,这些结构按值传递给C ++函数。 示例包括KeyPoint , Match 等。它们的方法由 CV_WRAP 扩展,而字段由 CV_PROP_RW 扩展。

class CV_EXPORTS_W_SIMPLE DMatch
{
public:
    CV_WRAP DMatch();
    CV_WRAP DMatch(int _queryIdx, int _trainIdx, float _distance);
    CV_WRAP DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance);
    CV_PROP_RW int queryIdx; // query descriptor index
    CV_PROP_RW int trainIdx; // train descriptor index
    CV_PROP_RW int imgIdx;   // train image index
    CV_PROP_RW float distance;
};

可以使用 CV_EXPORTS_W_MAP 导出其他一些小的类/结构,并将其导出到Python本机字典中。Moments()就是一个例子。

class CV_EXPORTS_W_MAP Moments
{
public:
    CV_PROP_RW double  m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
    CV_PROP_RW double  mu20, mu11, mu02, mu30, mu21, mu12, mu03;
    CV_PROP_RW double  nu20, nu11, nu02, nu30, nu21, nu12, nu03;
};

因此,这些是OpenCV中可用的主要扩展宏。通常,开发人员必须将适当的宏放在适当的位置,其余的由生成器脚本完成。有时,在某些特殊情况下,生成器脚本无法创建包装,此类函数需要手动处理,为此,需要编写自己的 pyopencv_*.hpp 扩展头文件,并将其放入模块的misc/python子目录中。但是大多数时候,根据OpenCV编码指南编写的代码将由生成器脚本自动包装。

更高级的情况涉及为Python提供C++接口中不存在的其他功能,例如额外的方法,类型映射或提供默认参数。稍后,将以UMat 数据类型为例。首先,要提供特定于Python的方法,CV_WRAP_PHANTOM 的用法与 CV_WRAP 相似,不同之处在于它以方法头文件作为参数,并且需要在自己的pyopencv_*.hpp 扩展名中提供方法主体。 UMat::queue() 和 UMat::context() 是此类方法的示例,这些方法在C++接口中不存在,但在Python端处理OpenCL功能时需要使用。其次,如果一个已经存在的数据类型可以映射到自定义的类,则最好使用 CV_WRAP_MAPPABLE 以源类型作为其参数来表明这种能力,而不是精心设计自己的binding函数。从Mat映射的UMat就是这种情况。最后,如果需要默认参数,但本机C++接口中未提供,则可以在Python端将其作为CV_WRAP_DEFAULT 的参数提供。按照下面的 UMat::getMat 示例:

class CV_EXPORTS_W UMat
{
public:
    // You would need to provide `static bool cv_mappable_to(const Ptr<Mat>& src, Ptr<UMat>& dst)`
    CV_WRAP_MAPPABLE(Ptr<Mat>);
    // returns the OpenCL queue used by OpenCV UMat.
    // You would need to provide the method body in the binder code
    CV_WRAP_PHANTOM(static void* queue());
    // You would need to provide the method body in the binder code
    CV_WRAP_PHANTOM(static void* context());
    CV_WRAP_AS(get) Mat getMat(int flags CV_WRAP_DEFAULT(ACCESS_RW)) const;
};

附加资源

以上就是OpenCV-Python Bindings如何生成的详细内容,更多关于OpenCV-Python Bindings的资料请关注aitechtogether.com其它相关文章!

退出移动版