站点图标 AI技术聚合

SGD,Adam,AdamW,LAMB优化器

一. SGD,Adam,AdamW,LAMB优化器

优化器是用来更新和计算影响模型训练和模型输出的网络参数,使其逼近或达到最优值,从而最小化(或最大化)损失函数。

1. SGD

随机梯度下降是最简单的优化器,它采用了简单的梯度下降法,只更新每一步的梯度,但是它的收敛速度会受到学习率的影响。
优点: 简单性,在优化算法中没有太多的参数需要调整,通过少量的计算量就可以获得比较好的结果。
缺点: 在某些极端情况下容易受到局部最小值的影响,也容易出现收敛的问题。

1. Adam

解决 GD 中固定学习率带来的不同参数间收敛速度不一致的弊端,AdaGrad 和 RMSprop 诞生出来,为每个参数赋予独立的学习率。计算梯度后,梯度较大的参数获得的学习率较低,反之亦然。此外,为避免每次梯度更新时都独立计算梯度,导致梯度方向持续变化,Momentum 将上一轮梯度值加入到当前梯度的计算中,通过某种权重对两者加权求和,获得当前批次参数更新的梯度值。 Adam 结合了这两项考虑,既为每一个浮点参数自适应性地设置学习率,又将过去的梯度历史纳入考量,其实现原理如下:
Adam

计算一阶、二阶动量矩,加入偏置修正,最后更新参数,gt表示t时刻梯度。从上述公式可以看出,训练前期的学习率和梯度更新是比较激进的,到后期逐渐平稳。虽然 Adam 优化器的使用会导致内存中多出两倍于原参数体量的占用,但与之换来的训练收益使得学术界并没有放弃这一高效的方法。

代码实现比较简单,照着公式敲就行了:

import autograd.numpy as np
from autograd import grad


class Adam:
    def __init__(self, loss, weights, lr=0.001, beta1=0.9, beta2=0.999, epislon=1e-8):
        self.loss = loss
        self.theta = weights
        self.lr = lr
        self.beta1 = beta1
        self.beta2 = beta2
        self.epislon = epislon
        self.get_gradient = grad(loss)
        self.m = 0
        self.v = 0
        self.t = 0

    def minimize_raw(self):
        self.t += 1
        g = self.get_gradient(self.loss)
        self.m = self.beta1 * self.m + (1 - self.beta1) * g
        self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g)
        self.m_hat = self.m / (1 - self.beta1 ** self.t)
        self.v_hat = self.v / (1 - self.beta2 ** self.t)
        self.theta = self.theta - self.lr * self.m_hat / (self.v_hat ** 0.5 + self.epislon)

2. AdamW

Adam 虽然收敛速度快,但没能解决参数过拟合的问题。学术界讨论了诸多方案,其中包括在损失函数中引入参数的 L2 正则项。这样的方法在其他的优化器中或许有效,但会因为 Adam 中自适应学习率的存在而对使用 Adam 优化器的模型失效,具体分析可见fastai的这篇文章:AdamW and Super-convergence is now the fastest way to train neural nets。AdamW 的出现便是为了解决这一问题,达到同样使参数接近于 0 的目的。具体的举措,是在最终的参数更新时引入参数自身

λ 即为权重衰减因子,常见的设置为 0.005/0.01。这一优化策略目前正广泛应用于各大预训练语言模型。

代码实现:

class AdamW:
    def __init__(self, loss, weights, lambda1, lr=0.001, beta1=0.9, beta2=0.999, epislon=1e-8):
        self.loss = loss
        self.theta = weights
        self.lr = lr
        self.beta1 = beta1
        self.beta2 = beta2
        self.epislon = epislon
        self.lambda1 = lambda1
        self.get_gradient = grad(loss)
        self.m = 0
        self.v = 0
        self.t = 0

    def minimize_raw(self):
        self.t += 1
        g = self.get_gradient(self.loss)
        self.m = self.beta1 * self.m + (1 - self.beta1) * g
        self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g)
        self.m_hat = self.m / (1 - self.beta1 ** self.t)
        self.v_hat = self.v / (1 - self.beta2 ** self.t)
        self.theta = self.theta - self.lr * (
                    self.m_hat / (self.v_hat ** 0.5 + self.epislon) + self.lambda1 * self.theta)

3. LAMB

LAMB 优化器是 2019 年出现的一匹新秀,它将bert模型的预训练时间从3天压缩到了76分钟! LAMB 出现的目的是加速预训练进程,这个优化器也成为 NLP 社区为泛机器学习领域做出的一大贡献。在使用 Adam 和 AdamW 等优化器时,一大问题在于 batch size 存在一定的隐式上限,一旦突破这个上限,梯度更新极端的取值会导致自适应学习率调整后极为困难的收敛,从而无法享受增加的 batch size 带来的提速增益。LAMB 优化器的作用便在于使模型在进行大批量数据训练时,能够维持梯度更新的精度。具体来说,LAMB 优化器支持自适应元素级更新(adaptive element-wise updating)和准确的逐层修正(layer-wise correction)。LAMB 可将 BERT 预训练的批量大小扩展到 64K,且不会造成准确率损失。BERT 预训练包括两个阶段:1)前 9/10 的训练 epoch 使用 128 的序列长度,2)最后 1/10 的训练 epoch 使用 512 的序列长度。LAMB的算法如下:

其中,为预先设定的超参数,分别代表参数调整的下界和上界。这一简单的调整所带来的实际效果非常显著。使用 AdamW 时,batch size 超过 512 便会导致模型效果大幅下降,但在 LAMB 下,batch size 可以直接提到 32,000 而不会导致精度损失

以下是 LAMB 优化器的 tensorflow1.x 代码,可作为参考以理解算法:

class LAMBOptimizer(tf.train.Optimizer):
    '''
    LAMBOptimizer optimizer.
	
	# Important Note
		- This is NOT an official implementation.
		- LAMB optimizer is changed from arXiv v1 ~ v3.
		- We implement v3 version (which is the latest version on June, 2019.).
		- Our implementation is based on `AdamWeightDecayOptimizer` in BERT (provided by Google).
    # References
		- LAMB optimier: https://github.com/ymcui/LAMB_Optimizer_TF
		- Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. https://arxiv.org/abs/1904.00962v3
		- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. https://arxiv.org/abs/1810.04805
    # Parameters
		- There is nothing special, just the same as `AdamWeightDecayOptimizer`.
    '''
    def __init__(self,
                 learning_rate,
                 weight_decay_rate=0.01,
                 beta_1=0.9,
                 beta_2=0.999,
                 epsilon=1e-6,
                 exclude_from_weight_decay=None,
                 name="LAMBOptimizer"):
        """Constructs a LAMBOptimizer."""
        super(LAMBOptimizer, self).__init__(False, name)

        self.learning_rate = learning_rate
        self.weight_decay_rate = weight_decay_rate
        self.beta_1 = beta_1
        self.beta_2 = beta_2
        self.epsilon = epsilon
        self.exclude_from_weight_decay = exclude_from_weight_decay

    def apply_gradients(self, grads_and_vars, global_step=None, name=None):
        """See base class."""
        assignments = []
        for (grad, param) in grads_and_vars:
            if grad is None or param is None:
                continue

            param_name = self._get_variable_name(param.name)

            m = tf.get_variable(
                name=param_name + "/lamb_m",
                shape=param.shape.as_list(),
                dtype=tf.float32,
                trainable=False,
                initializer=tf.zeros_initializer())
            v = tf.get_variable(
                name=param_name + "/lamb_v",
                shape=param.shape.as_list(),
                dtype=tf.float32,
                trainable=False,
                initializer=tf.zeros_initializer())

            # Standard Adam update.
            next_m = (
                    tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
            next_v = (
                    tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
                                                              tf.square(grad)))

            update = next_m / (tf.sqrt(next_v) + self.epsilon)

            # Just adding the square of the weights to the loss function is *not*
            # the correct way of using L2 regularization/weight decay with Adam,
            # since that will interact with the m and v parameters in strange ways.
            #
            # Instead we want ot decay the weights in a manner that doesn't interact
            # with the m/v parameters. This is equivalent to adding the square
            # of the weights to the loss with plain (non-momentum) SGD.
            if self._do_use_weight_decay(param_name):
                update += self.weight_decay_rate * param

            ############## BELOW ARE THE SPECIFIC PARTS FOR LAMB ##############

            # Note: Here are two choices for scaling function \phi(z)
            # minmax:   \phi(z) = min(max(z, \gamma_l), \gamma_u)
            # identity: \phi(z) = z
            # The authors does not mention what is \gamma_l and \gamma_u
            # UPDATE: after asking authors, they provide me the code below.
            # ratio = array_ops.where(math_ops.greater(w_norm, 0), array_ops.where(
            #      math_ops.greater(g_norm, 0), (w_norm / g_norm), 1.0), 1.0)

            r1 = tf.sqrt(tf.reduce_sum(tf.square(param)))
            r2 = tf.sqrt(tf.reduce_sum(tf.square(update)))

            r = tf.where(tf.greater(r1, 0.0),
                         tf.where(tf.greater(r2, 0.0),
                                  r1 / r2,
                                  1.0),
                         1.0)

            eta = self.learning_rate * r

            update_with_lr = eta * update

            next_param = param - update_with_lr

            assignments.extend(
                [param.assign(next_param),
                 m.assign(next_m),
                 v.assign(next_v)])
        return tf.group(*assignments, name=name)

    def _do_use_weight_decay(self, param_name):
        """Whether to use L2 weight decay for `param_name`."""
        if not self.weight_decay_rate:
            return False
        if self.exclude_from_weight_decay:
            for r in self.exclude_from_weight_decay:
                if re.search(r, param_name) is not None:
                    return False
        return True

    def _get_variable_name(self, param_name):
        """Get the variable name from the tensor name."""
        m = re.match("^(.*):\\d+$", param_name)
        if m is not None:
            param_name = m.group(1)
        return param_name

二. 参考链接

  1. Adam,AdamW,LAMB优化器原理与代码
  2. 优化器SGD、Adam和AdamW的区别和联系

文章出处登录后可见!

已经登录?立即刷新
退出移动版