参考资料
1. 简介
蚁群算法(Ant Colony Algorithm, ACO) 于1991年首次提出,该算法模拟了自然界中蚂蚁的觅食行为。蚂蚁在寻找食物源时, 会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。 信息素浓度的大小表征路径的远近, 信息素浓度越高, 表示对应的路径距离越短。通常, 蚂蚁会以较大的概率优先选择信息素浓度较高的路径, 并释放一定量的信息素, 以增强该条路径上的信息素浓度, 这样,会形成一个正反馈。 最终, 蚂蚁能够找到一条从巢穴到食物源的最佳路径, 即距离最短。
2. 基本思想
- 用蚂蚁的行走路径表示待优化问题的可行解, 整个蚂蚁群体的所有路径构成待优化问题的解空间。
- 路径较短的蚂蚁释放的信息素量较多, 随着时间的推进, 较短的路径上累积的信息素浓度逐渐增高, 选择该路径的蚂蚁个数也愈来愈多。
- 最终, 整个蚂蚁会在正反馈的作用下集中到最佳的路径上, 此时对应的便是待优化问题的最优解。
3. 算法精讲
不失一般性,我们定义一个具有N个节点的有权图
-
设整个蚂蚊群体中蚂蚊的数量为
, 路径节点的数量为 , 节点 与节点 之间的相互距离为 时刻节点 与节点 连接路径上的信息素浓度为 。初始时刻, 各个节点间连接路径上的信息素浓度相同, 不妨设为 。 -
蚂蚁
根据各个节点间连接路径上的信息素浓度决定其下一个访问节点, 设 表示 时刻蚂蚊 从节点 转移到节点 的概率, 其计算公式如下:
其中,
为启发函数, , 表示蚂蚊从节点 转移到节点 的期望程度, 为蚂蚁 待访问节点的集合。开始时, 中有(n-1)个元素,即包括除了蚂蚁 出发节点的其它所有节点。随着时间的推进, allow 中的元素不断减少, 直至为空, 即表示所有的节点均访问完毕。 为信息素重要程度因子, 其值越大, 蚂蚁选择之前走过的路径可能性就越大,搜索路径的随机性减弱, 其值越小,蚁群搜索范围就会减少,容易陷入局部最优。一般取值范围为 。 为启发函数重要程度因子, 其值越大, 表示启发函数在转移中的作用越大, 即蚂蚊会以较大的摡率转移到距离短的节点,蚁群就越容易选择局部较短路径,这时算法的收敛速度是加快了,但是随机性却不高,容易得到局部的相对最优。一般取值范围为 。
-
计算完节点间的转移概率后,采用与遗传算法中一样的轮盘赌方法选择下一个待访问的节点。
依据轮盘赌法来选择下一个待访问的节点, 而不是直接按概率大小选择,是因为这样可以扩大搜索范围,进而寻找全局最优,避免陷入局部最优。
首先计算每个个体的累积概率
,如下式:
相当于转盘上的跨度,跨度越大的区域越容易选到, 代表下一步可选路径的数量。
之后随机生成一个 的小数 ,比较所有 与 的大小,选出大于 的最小的那个 该 对应的索引 即为第 只蚂蚁在第 条路径时下一步要选择的目标点。
-
在蚂蚁释放信息素的同时,各个节点间连接路径上的信息素逐渐消失,设参数
~ 表示 信息素的挥发程度。当所有的蚂蚁完成一次循环后,各个节点间链接路径上的信息素浓度需进行更新,计算公式为
其中, 表示第 只蚂蚁在节点 与节点 连接路径上释放的信息素浓度; 表示所有蚂蚁在节点 与节点 连接路径上释放的信息素浓度之和。 -
蚂蚁信息素更新的模型包括蚁周模型(Ant-Cycle模型)、蚁量模型(Ant-Quantity模型)、蚁密模型(Ant-Density模型)等。
区别:
-
蚁周模型利用的是全局信息,即蚂蚁完成一个循环后更新所有路径上的信息素;
-
蚁量和蚁密模型利用的是局部信息,即蚂蚁完成一步后更新路径上的信息素。
信息素增量不同 信息素更新时刻不同 信息素更新形式不同 蚁周模型 信息素增量为 ,它只与搜索路线有关与具体的路径(i,j)无关在第k只蚂蚁完成一次路径搜索后,对线路上所有路径进行信息素的更新 信息素增量与本次搜索的整体线路有关,因此属于全局信息更新 蚁量模型 信息素增量为 ,与路径(i,j)的长度有关在蚁群前进过程中进行,蚂蚁每完成一步移动后更新该路径上的信息素 利用蚂蚁所走路径上的信息进行更新,因此属于局部信息更新 蚁密模型 信息素增量为固定值Q 在蚁群前进过程中进行,蚂蚁每完成一步移动后更新该路径上的信息素 利用蚂蚁所走路径上的信息进行更新,因此属于局部信息更新 蚁周模型的
计算公式如下
式中 为信息素常数(一个正的常数),表示蚂蚁循环一次所释放的信息素总量。 为第k只蚂蚁经过路径的总长度。 -
4. 算法步骤
-
对相关参数进行初始化,如蚁群规模(蚂蚁数量)
、信息素重要程度因子 、启发函数重要程度因子 、信息素挥发因子 、信息素常数 、最大迭代次数 。 -
构建解空间,将各个蚂蚁随机地置于不同的出发点,为每只蚂蚁确定当前候选道路集
-
更新信息素计算每个蚂蚁经过路径长度
,记录当前迭代次数中的最优解(最短路径)。同时,对各个节点连接路径上信息素浓度进行更新。 -
判断是否终止若
,则令 ,清空蚂蚁经过路径的记录表,并返回步骤2;否则,终止计算,输出最优解。
5. python实现
使用蚁群算法解决旅行商问题(TSP),代码来自博客。
import numpy as np
import matplotlib.pyplot as plt
# 城市坐标(52个城市)
coordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],
[880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],
[1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],
[725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],
[300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],
[1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],
[420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],
[685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],
[475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],
[830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],
[1340.0,725.0],[1740.0,245.0]])
def getdistmat(coordinates):
num = coordinates.shape[0]
distmat = np.zeros((52, 52))
for i in range(num):
for j in range(i, num):
distmat[i][j] = distmat[j][i] = np.linalg.norm(
coordinates[i] - coordinates[j])
return distmat
# #//初始化
distmat = getdistmat(coordinates)
numant = 45 ##// 蚂蚁个数
numcity = coordinates.shape[0] ##// 城市个数
alpha = 1 ##// 信息素重要程度因子
beta = 5 ##// 启发函数重要程度因子
rho = 0.1 ##// 信息素的挥发速度
Q = 1 ##//信息素释放总量
iter = 0##//循环次数
itermax = 200#//循环最大值
etatable = 1.0 / (distmat + np.diag([1e10] * numcity)) #// 启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度
pheromonetable = np.ones((numcity, numcity)) #// 信息素矩阵
pathtable = np.zeros((numant, numcity)).astype(int) #// 路径记录表
distmat = getdistmat(coordinates) #// 城市的距离矩阵
lengthaver = np.zeros(itermax) #// 各代路径的平均长度
lengthbest = np.zeros(itermax) #// 各代及其之前遇到的最佳路径长度
pathbest = np.zeros((itermax, numcity)) #// 各代及其之前遇到的最佳路径长度
#//核心点-循环迭代
while iter < itermax:
#// 随机产生各个蚂蚁的起点城市
if numant <= numcity:
#// 城市数比蚂蚁数多
pathtable[:, 0] = np.random.permutation(range(0, numcity))[:numant]
else:
#// 蚂蚁数比城市数多,需要补足
pathtable[:numcity, 0] = np.random.permutation(range(0, numcity))[:]
pathtable[numcity:, 0] = np.random.permutation(range(0, numcity))[
:numant - numcity]
length = np.zeros(numant) # 计算各个蚂蚁的路径距离
for i in range(numant):
visiting = pathtable[i, 0] # 当前所在的城市
unvisited = set(range(numcity)) # 未访问的城市,以集合的形式存储{}
unvisited.remove(visiting) # 删除元素;利用集合的remove方法删除存储的数据内容
for j in range(1, numcity): # 循环numcity-1次,访问剩余的numcity-1个城市
# 每次用轮盘法选择下一个要访问的城市
listunvisited = list(unvisited)
probtrans = np.zeros(len(listunvisited))
for k in range(len(listunvisited)):
probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]], alpha) \
* np.power(etatable[visiting][listunvisited[k]], beta)
cumsumprobtrans = (probtrans / sum(probtrans)).cumsum()
cumsumprobtrans -= np.random.rand()
k = listunvisited[(np.where(cumsumprobtrans > 0)[0])[0]]
# 元素的提取(也就是下一轮选的城市)
pathtable[i, j] = k # 添加到路径表中(也就是蚂蚁走过的路径)
unvisited.remove(k) # 然后在为访问城市set中remove()删除掉该城市
length[i] += distmat[visiting][k]
visiting = k
# 蚂蚁的路径距离包括最后一个城市和第一个城市的距离
length[i] += distmat[visiting][pathtable[i, 0]]
# 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数
lengthaver[iter] = length.mean()
if iter == 0:
lengthbest[iter] = length.min()
pathbest[iter] = pathtable[length.argmin()].copy()
else:
if length.min() > lengthbest[iter - 1]:
lengthbest[iter] = lengthbest[iter - 1]
pathbest[iter] = pathbest[iter - 1].copy()
else:
lengthbest[iter] = length.min()
pathbest[iter] = pathtable[length.argmin()].copy()
# 更新信息素
changepheromonetable = np.zeros((numcity, numcity))
for i in range(numant):
for j in range(numcity - 1):
changepheromonetable[pathtable[i, j]][pathtable[i, j + 1]] += Q / distmat[pathtable[i, j]][
pathtable[i, j + 1]] # 计算信息素增量
changepheromonetable[pathtable[i, j + 1]][pathtable[i, 0]] += Q / distmat[pathtable[i, j + 1]][pathtable[i, 0]]
pheromonetable = (1 - rho) * pheromonetable + \
changepheromonetable # 计算信息素公式
if iter%30==0:
print("iter(迭代次数):", iter)
iter += 1 # 迭代次数指示器+1
# 做出平均路径长度和最优路径长度
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(12, 10))
axes[0].plot(lengthaver, 'k', marker=u'')
axes[0].set_title('Average Length')
axes[0].set_xlabel(u'iteration')
axes[1].plot(lengthbest, 'k', marker=u'')
axes[1].set_title('Best Length')
axes[1].set_xlabel(u'iteration')
fig.savefig('average_best.png', dpi=500, bbox_inches='tight')
plt.show()
# 作出找到的最优路径图
bestpath = pathbest[-1]
plt.plot(coordinates[:, 0], coordinates[:, 1], 'r.', marker=u'$\cdot$')
plt.xlim([-100, 2000])
plt.ylim([-100, 1500])
for i in range(numcity - 1):
m = int(bestpath[i])
n = int(bestpath[i + 1])
plt.plot([coordinates[m][0], coordinates[n][0]], [
coordinates[m][1], coordinates[n][1]], 'k')
plt.plot([coordinates[int(bestpath[0])][0], coordinates[int(n)][0]],
[coordinates[int(bestpath[0])][1], coordinates[int(n)][1]], 'b')
ax = plt.gca()
ax.set_title("Best Path")
ax.set_xlabel('X axis')
ax.set_ylabel('Y_axis')
plt.savefig('best path.png', dpi=500, bbox_inches='tight')
plt.show()
文章出处登录后可见!