在 pytorch 闪电中自定义优化器

青葱年少 pytorch 400

原文标题Customizing optimizer in pytorch lightning

在这里,我在普通的 pytorch 中实现了一个自定义优化器。我正在尝试在 pytorch 闪电中做同样的事情,但不知道该怎么做。

def run_epoch(data_iter, model, loss_compute, model_opt):
    "Standard Training and Logging Function"
    start = time.time()
    total_tokens = 0
    total_loss = 0
    tokens = 0
    sofar = 0
    for i, batch in enumerate(data_iter):
        sofar = sofar + len(batch.src)

        output = model.forward(batch.src, batch.trg,
                            batch.src_mask, batch.trg_mask)
     
        loss = loss_compute(output, batch.trg_y, batch.ntokens)
        loss.backward()
        if model_opt is not None:
            model_opt.step()
            model_opt.optimizer.zero_grad()

        total_loss += loss
        total_tokens += batch.ntokens
        tokens += batch.ntokens
        tokens = 0
    return total_loss / total_tokens



class CustomOptimizer:

    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0

    def step(self):
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()

    def rate(self, step=None):
        "Implement `lrate` above"
        if step is None:
            step = self._step
        return self.factor * (self.model_size ** (-0.5) * min(step ** (-0.5), step * 
               self.warmup ** (-1.5)))

if __name__ == "__main__":
    model = create_model(V, V, N=2)


    customOptimizer = CustomOptimizer(model.src_embed[0].d_model, 
    1, 400,
    torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), 
    eps=1e-9))

    for epoch in range(10):
        model.train()
        run_epoch(data, model, 
                  LossCompute(model.generator, LabelSmoothing), 
                  customOptimizer)


我尽力按照pytorch闪电官方文档,下面的代码是我的尝试。代码运行流畅,没有错误。但是每个epoch的loss下降非常慢。所以我使用pycharm中的调试器,发现customOptimizer在线customOptimizer.step()的学习率始终保持相同的值“5.52471728019903e-06”。而在上面显示的普通pytorch中的实现中,随着训练的进行,学习率确实成功地改变了。

class Model(pl.LightningModule)
    def __init__(self, ....) 
        self.automatic_optimization = False
        :
        :
        :
   :
   :
   :
    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)
   

    def training_step(self, batch, batch_idx):   
        optimizer = self.optimizers()
        customOptimizer = 
        CustomOptimizer(self.src_embed[0].d_model, 1, 400, 
                          optimizer.optimizer)  
        batch = Batch(batch[0], batch[1])
        out = self(batch.src, batch.trg, batch.src_mask, batch.trg_mask)
        out = self.generator(out)
        labelSmoothing = LabelSmoothing(size=tgt_vocab, padding_idx=1, smoothing=0.1)
        loss = labelSmoothing(out.contiguous().view(-1, out.size(-1)), 
               batch.trg_y.contiguous().view(-1)) / batch.ntokens
        loss.backward()
        customOptimizer.step()
        customOptimizer.optimizer.zero_grad()
        log = {'train_loss': loss}
        return {'loss': loss, 'log': log}



if __name__ == '__main__':
    if True:
        model = model(......)
        trainer = pl.Trainer(max_epochs=5)
        trainer.fit(model, train_dataloaders=trainLoader)

原文链接:https://stackoverflow.com//questions/71888793/customizing-optimizer-in-pytorch-lightning

回复

我来回复
  • Jordan的头像
    Jordan 评论

    谢谢它有效。

    class Model(pl.LightningModule)
        def __init__(self, ....) 
            self.automatic_optimization = False
            self.customOptimizer = None
            :
            :
            :
       :
       :
       :
        def configure_optimizers(self):
            return torch.optim.Adam(self.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)
       
    
        def training_step(self, batch, batch_idx):  
            if self.customOptimizer = None:  
               optimizer = self.optimizers()
               self.customOptimizer = 
               CustomOptimizer(self.src_embed[0].d_model, 1, 400, 
                              optimizer.optimizer)  
            batch = Batch(batch[0], batch[1])
            out = self(batch.src, batch.trg, batch.src_mask, batch.trg_mask)
            out = self.generator(out)
            labelSmoothing = LabelSmoothing(size=tgt_vocab, padding_idx=1, smoothing=0.1)
            loss = labelSmoothing(out.contiguous().view(-1, out.size(-1)), 
                   batch.trg_y.contiguous().view(-1)) / batch.ntokens
            loss.backward()
            self.customOptimizer.step()
            self.customOptimizer.optimizer.zero_grad()
            log = {'train_loss': loss}
            return {'loss': loss, 'log': log}
    
    
    
    if __name__ == '__main__':
        if True:
            model = model(......)
            trainer = pl.Trainer(max_epochs=5)
            trainer.fit(model, train_dataloaders=trainLoader)```
    
    2年前 0条评论
此站出售,如需请站内私信或者邮箱!