如何在 Google Collab 中使用 scipy 最小化和 GPU?

乘风 pytorch 301

原文标题How to use scipy minimization with GPU in google collab?

我不得不在协作中将我的运行时类型更改为 GPU,否则 RAM 崩溃了。但是,当我使用 GPU 时,我在执行 scipy 最小化时遇到错误。错误如下:-

------Start--------
Traceback (most recent call last):
  File "<ipython-input-8-4ca37ba86fbb>", line 119, in train
    result=minimize(objective,val,constraints=cons,options={"disp":True})
  File "/usr/local/lib/python3.7/dist-packages/scipy/optimize/_minimize.py", line 618, in minimize
    constraints, callback=callback, **options)
  File "/usr/local/lib/python3.7/dist-packages/scipy/optimize/slsqp.py", line 315, in _minimize_slsqp
    for c in cons['ineq']]))
  File "/usr/local/lib/python3.7/dist-packages/scipy/optimize/slsqp.py", line 315, in <listcomp>
    for c in cons['ineq']]))
  File "<ipython-input-8-4ca37ba86fbb>", line 64, in constraint
    return -(A @ v)+alpha   # scipy proves >= for constraints
  File "/usr/local/lib/python3.7/dist-packages/torch/_tensor.py", line 678, in __array__
    return self.numpy()
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.

------End--------

如何摆脱这个问题?我需要将哪个张量复制到主机内存?我的目标是最小化和约束如下: –

#Declaring the minimization equation here

def objective(x):
    alpha = x[0]
    v=x[1:len(x)]
    vnorm=torch.linalg.vector_norm(v) * torch.linalg.vector_norm(v)
    return alpha+(vnorm/2)

#Declaring the constraint here

def constraint(x):
    alpha=x[0]
    v=x[1:len(x)]
    return -(A @ v)+alpha


cons={'type':'ineq','fun':constraint}
result=minimize(objective,val,constraints=cons,options={"disp":True})

原文链接:https://stackoverflow.com//questions/71972869/how-to-use-scipy-minimization-with-gpu-in-google-collab

回复

我来回复
  • draw的头像
    draw 评论

    val变量为torch.Tensor或矩阵A,用于constraint函数。所以如果valistorch.Tensorcomputeresult有以下行:

    result = minimize(objective, val.cpu().numpy(), constraints=cons, options={"disp" : True})
    

    就这样vals在主机上转了nd.array,果然文档上最小化了。转动And.array(如果需要)可以用同样的方法完成。

    2年前 0条评论
此站出售,如需请站内私信或者邮箱!