IOU Loss
算法作用:Iou的就是交并比,预测框和真实框相交区域面积和合并区域面积的比值,计算公式如下,Iou作为损失函数的时候只要将其对数值输出就好了。
def Iou_loss(preds, bbox, eps=1e-6, reduction='mean'):
'''
preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
reduction:"mean"or"sum"
return: loss
'''
x1 = torch.max(preds[:, 0], bbox[:, 0])
y1 = torch.max(preds[:, 1], bbox[:, 1])
x2 = torch.min(preds[:, 2], bbox[:, 2])
y2 = torch.min(preds[:, 3], bbox[:, 3])
w = (x2 - x1 + 1.0).clamp(0.)
h = (y2 - y1 + 1.0).clamp(0.)
inters = w * h
print("inters:\n",inters)
uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
bbox[:, 3] - bbox[:, 1] + 1.0) - inters
print("uni:\n",uni)
ious = (inters / uni).clamp(min=eps)
loss = -ious.log()
if reduction == 'mean':
loss = torch.mean(loss)
elif reduction == 'sum':
loss = torch.sum(loss)
else:
raise NotImplementedError
print("last_loss:\n",loss)
return loss
if __name__ == "__main__":
pred_box = torch.tensor([[2,4,6,8],[5,9,13,12]])
gt_box = torch.tensor([[3,4,7,9]])
loss = Iou_loss(preds=pred_box,bbox=gt_box)
# 输出结果
"""
inters:
tensor([20., 3.])
uni:
tensor([35., 63.])
last_loss:
tensor(1.8021)
"""
GIOU Loss
code
def Giou_loss(preds, bbox, eps=1e-7, reduction='mean'):
'''
https://github.com/sfzhang15/ATSS/blob/master/atss_core/modeling/rpn/atss/loss.py#L36
:param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
:param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
:return: loss
'''
ix1 = torch.max(preds[:, 0], bbox[:, 0])
iy1 = torch.max(preds[:, 1], bbox[:, 1])
ix2 = torch.min(preds[:, 2], bbox[:, 2])
iy2 = torch.min(preds[:, 3], bbox[:, 3])
iw = (ix2 - ix1 + 1.0).clamp(0.)
ih = (iy2 - iy1 + 1.0).clamp(0.)
# overlap
inters = iw * ih
print("inters:\n",inters)
# union
uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
bbox[:, 3] - bbox[:, 1] + 1.0) - inters + eps
print("uni:\n",uni)
# ious
ious = inters / uni
print("Iou:\n",ious)
ex1 = torch.min(preds[:, 0], bbox[:, 0])
ey1 = torch.min(preds[:, 1], bbox[:, 1])
ex2 = torch.max(preds[:, 2], bbox[:, 2])
ey2 = torch.max(preds[:, 3], bbox[:, 3])
ew = (ex2 - ex1 + 1.0).clamp(min=0.)
eh = (ey2 - ey1 + 1.0).clamp(min=0.)
# enclose erea
enclose = ew * eh + eps
print("enclose:\n",enclose)
giou = ious - (enclose - uni) / enclose
loss = 1 - giou
if reduction == 'mean':
loss = torch.mean(loss)
elif reduction == 'sum':
loss = torch.sum(loss)
else:
raise NotImplementedError
print("last_loss:\n",loss)
return loss
if __name__ == "__main__":
pred_box = torch.tensor([[2,4,6,8],[5,9,13,12]])
gt_box = torch.tensor([[3,4,7,9]])
loss = Giou_loss(preds=pred_box,bbox=gt_box)
# 输出结果
"""
inters:
tensor([20., 3.])
uni:
tensor([35., 63.])
Iou:
tensor([0.5714, 0.0476])
enclose:
tensor([36., 99.])
last_loss:
tensor(0.8862)
"""
DIOU Loss
code
def Diou_loss(preds, bbox, eps=1e-7, reduction='mean'):
'''
preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
eps: eps to avoid divide 0
reduction: mean or sum
return: diou-loss
'''
ix1 = torch.max(preds[:, 0], bbox[:, 0])
iy1 = torch.max(preds[:, 1], bbox[:, 1])
ix2 = torch.min(preds[:, 2], bbox[:, 2])
iy2 = torch.min(preds[:, 3], bbox[:, 3])
iw = (ix2 - ix1 + 1.0).clamp(min=0.)
ih = (iy2 - iy1 + 1.0).clamp(min=0.)
# overlaps
inters = iw * ih
# union
uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
bbox[:, 3] - bbox[:, 1] + 1.0) - inters
# iou
iou = inters / (uni + eps)
print("iou:\n",iou)
# inter_diag
cxpreds = (preds[:, 2] + preds[:, 0]) / 2
cypreds = (preds[:, 3] + preds[:, 1]) / 2
cxbbox = (bbox[:, 2] + bbox[:, 0]) / 2
cybbox = (bbox[:, 3] + bbox[:, 1]) / 2
inter_diag = (cxbbox - cxpreds) ** 2 + (cybbox - cypreds) ** 2
print("inter_diag:\n",inter_diag)
# outer_diag
ox1 = torch.min(preds[:, 0], bbox[:, 0])
oy1 = torch.min(preds[:, 1], bbox[:, 1])
ox2 = torch.max(preds[:, 2], bbox[:, 2])
oy2 = torch.max(preds[:, 3], bbox[:, 3])
outer_diag = (ox1 - ox2) ** 2 + (oy1 - oy2) ** 2
print("outer_diag:\n",outer_diag)
diou = iou - inter_diag / outer_diag
diou = torch.clamp(diou, min=-1.0, max=1.0)
diou_loss = 1 - diou
print("last_loss:\n",diou_loss)
if reduction == 'mean':
loss = torch.mean(diou_loss)
elif reduction == 'sum':
loss = torch.sum(diou_loss)
else:
raise NotImplementedError
return loss
if __name__ == "__main__":
pred_box = torch.tensor([[2,4,6,8],[5,9,13,12]])
gt_box = torch.tensor([[3,4,7,9]])
loss = Diou_loss(preds=pred_box,bbox=gt_box)
# 输出结果
"""
iou:
tensor([0.5714, 0.0476])
inter_diag:
tensor([ 1, 32])
outer_diag:
tensor([ 50, 164])
last_loss:
tensor([0.4286, 0.9524])
"""
CIOU Loss
code
import math
def Ciou_loss(preds, bbox, eps=1e-7, reduction='mean'):
'''
https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/loss/multibox_loss.py
:param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
:param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
:param eps: eps to avoid divide 0
:param reduction: mean or sum
:return: diou-loss
'''
ix1 = torch.max(preds[:, 0], bbox[:, 0])
iy1 = torch.max(preds[:, 1], bbox[:, 1])
ix2 = torch.min(preds[:, 2], bbox[:, 2])
iy2 = torch.min(preds[:, 3], bbox[:, 3])
iw = (ix2 - ix1 + 1.0).clamp(min=0.)
ih = (iy2 - iy1 + 1.0).clamp(min=0.)
# overlaps
inters = iw * ih
# union
uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
bbox[:, 3] - bbox[:, 1] + 1.0) - inters
# iou
iou = inters / (uni + eps)
print("iou:\n",iou)
# inter_diag
cxpreds = (preds[:, 2] + preds[:, 0]) / 2
cypreds = (preds[:, 3] + preds[:, 1]) / 2
cxbbox = (bbox[:, 2] + bbox[:, 0]) / 2
cybbox = (bbox[:, 3] + bbox[:, 1]) / 2
inter_diag = (cxbbox - cxpreds) ** 2 + (cybbox - cypreds) ** 2
# outer_diag
ox1 = torch.min(preds[:, 0], bbox[:, 0])
oy1 = torch.min(preds[:, 1], bbox[:, 1])
ox2 = torch.max(preds[:, 2], bbox[:, 2])
oy2 = torch.max(preds[:, 3], bbox[:, 3])
outer_diag = (ox1 - ox2) ** 2 + (oy1 - oy2) ** 2
diou = iou - inter_diag / outer_diag
print("diou:\n",diou)
# calculate v,alpha
wbbox = bbox[:, 2] - bbox[:, 0] + 1.0
hbbox = bbox[:, 3] - bbox[:, 1] + 1.0
wpreds = preds[:, 2] - preds[:, 0] + 1.0
hpreds = preds[:, 3] - preds[:, 1] + 1.0
v = torch.pow((torch.atan(wbbox / hbbox) - torch.atan(wpreds / hpreds)), 2) * (4 / (math.pi ** 2))
alpha = v / (1 - iou + v)
ciou = diou - alpha * v
ciou = torch.clamp(ciou, min=-1.0, max=1.0)
ciou_loss = 1 - ciou
if reduction == 'mean':
loss = torch.mean(ciou_loss)
elif reduction == 'sum':
loss = torch.sum(ciou_loss)
else:
raise NotImplementedError
print("last_loss:\n",loss)
return loss
if __name__ == "__main__":
pred_box = torch.tensor([[2,4,6,8],[5,9,13,12]])
gt_box = torch.tensor([[3,4,7,9]])
loss = Ciou_loss(preds=pred_box,bbox=gt_box)
# 输出结果
"""
iou:
tensor([0.5714, 0.0476])
diou:
tensor([0.5714, 0.0476])
last_loss:
tensor(0.6940)
"""
EIOU-loss和Focal EIOU-loss
code
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, EIoU=False, eps=1e-7):
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if GIoU or DIoU or CIoU or EIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU or EIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
if DIoU:
return iou - rho2 / c2 # DIoU
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
elif EIoU:
rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
cw2 = cw ** 2 + eps
ch2 = ch ** 2 + eps
return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU
else:
return iou # IoU
alpha IOU
code
def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=3, eps=1e-7):
# Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
# change iou into pow(iou+eps)
# iou = inter / union
iou = torch.pow(inter/union + eps, alpha)
# beta = 2 * alpha
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
if DIoU:
return iou - rho2 / c2 # DIoU
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha_ciou = v / ((1 + eps) - inter / union + v)
# return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
# c_area = cw * ch + eps # convex area
# return iou - (c_area - union) / c_area # GIoU
c_area = torch.max(cw * ch + eps, union) # convex area
return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
else:
return iou # torch.log(iou+eps) or iou
文章出处登录后可见!
已经登录?立即刷新