CARLA–车辆添加segmentation语义分割相机[超详细]–[入门-2]

系列文章目录

CARLA pygame window界面大小调节两种方法-Ubuntu18.04

[收藏]CRALA模拟器全网优质学习资料整合[入门-1]

CARLA蓝图库可调用的车辆和地图模型名称大全

如何在carla中加入车辆群[基于traffic manager]

系列文章目录

前言

二、整体代码

三、效果展示 

四、拓展:什么是语义分割

前言

        博客上一些常见的语义分割相机demo在ubuntu18.4上运行时往往会出现摄像头画面只有一帧的情况,而在windows上似乎是可以正常运行的,对于这些代码,我没能找出问题的具体原因,只是怀疑是由于是系统差异造成的,知道成因和解决方法的朋友欢迎在评论区留言讨论。

        下面展示一个能在ubuntu18.4上跑通的demo,具体可以实现的效果有:

        1.实时连续显示语义分割图像画面

        2.可搭载在车上指定位置

        3.视角可随意在三轴坐标系转换,实现水平/鸟瞰等任意视角的显示

        4.定义对应的场视角,组合多个模块的摄像头,可达到环视效果

        5.存储采集的数据画面

一、demo模块说明

  1.定义对应的场视角,组合多个模块的摄像头,达到环视效果需要“360/场视角”个摄像头,这里展示三个摄像头的效果

 #-------------------------- 添加语义分割相机--------------------------#
        sensor_queue = Queue()
        sem_bp = blueprint_library.find('sensor.camera.semantic_segmentation')
        sem_bp.set_attribute("image_size_x",f"{IM_WIDTH}")
        sem_bp.set_attribute("image_size_y",f"{IM_HEIGHT}")
        sem_bp.set_attribute("fov",str(60))
        #场视角,需要组成环视需要“360/场视角”个摄像头

       

2.视角可随意在三轴坐标系转换,实现水平/鸟瞰等任意视角的显示:


        sem01 = world.spawn_actor(sem_bp,carla.Transform(carla.Location(0,0,1.8),carla.Rotation(yaw=60 )),attach_to=ego_vehicle)
        sem01.listen(lambda data: sensor_callback(data, sensor_queue, "sem_01"))
        sensor_list.append(sem01)
        sem02 = world.spawn_actor(sem_bp,carla.Transform(carla.Location(0,0,1.8),carla.Rotation(yaw=0)),attach_to=ego_vehicle)
    

carla.Transform(carla.Location(0,0,1.8),carla.Rotation(yaw=60 ))

        location是相对车辆底盘中心的平移位置,调整可实现车上任意位置摄像头的安装

        Rotation是相对车辆底盘中心的旋转位置

        Yaw(偏航):欧拉角向量的y轴
        Pitch(俯仰):欧拉角向量的x轴
        Roll(翻滚): 欧拉角向量的z轴

这里默认Pitch=0 Roll=0,对其进行调整就可以实现任意视角的显示

关于Yaw-Pitch-Roll的说明可以看这篇博客:python旋转矩阵与欧拉角互转

3.继续添加相机模块

    sem02.listen(lambda data: sensor_callback(data, sensor_queue, "sem_02"))
        sensor_list.append(sem02) 
        sem03 = world.spawn_actor(sem_bp,carla.Transform(carla.Location(0,0,1.8),carla.Rotation(yaw=-60)),attach_to=ego_vehicle)
        sem03.listen(lambda data: sensor_callback(data, sensor_queue, "sem_03"))
        sensor_list.append(sem03)   
        
        #-------------------------- 语义分割相机设置完毕 --------------------------#

4.相机画面组合及可视化展示


            w_frame = world.get_snapshot().frame
            print("\nWorld's frame: %d" % w_frame)
            try:
                sems = []
                for i in range (0, len(sensor_list)):
                    s_frame, s_name, s_data = sensor_queue.get(True, 1.0)
                    print("    Frame: %d   Sensor: %s" % (s_frame, s_name))
                    sensor_type = s_name.split('_')[0]
                    if sensor_type == 'sem':
                        sems.append(process_semantic(s_data))    

                   
                # 仅用来可视化 可注释
                rgb=np.concatenate(sems, axis=1)[...,:3] # 合并图像
                
                cv2.imshow('vizs', visualize_data(rgb))
                cv2.waitKey(100)
                if rgb is None or args.save_path is not None:
                    # 检查是否有各自传感器的文件夹
                    mkdir_folder(args.save_path)
                    filename = args.save_path +'rgb/'+str(w_frame)+'.png'
                    cv2.imwrite(filename, np.array(rgb[...,::-1]))
                
            except Empty:
                print("    Some of the sensor information is missed")

5.存储数据

 if rgb is None or args.save_path is not None:
                    # 检查是否有各自传感器的文件夹
                    mkdir_folder(args.save_path)
                    filename = args.save_path +'rgb/'+str(w_frame)+'.png'
                    cv2.imwrite(filename, np.array(rgb[...,::-1]))

二、整体代码


import glob
import os
import sys
import time

try:
    sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
        sys.version_info.major,
        sys.version_info.minor,
        'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
    pass

import carla
import random
import numpy as np
import cv2
from queue import Queue, Empty
import random
random.seed(50)

# args
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--host', metavar='H',    default='127.0.0.1', help='IP of the host server (default: 127.0.0.1)')
parser.add_argument('--port', '-p',           default=2000, type=int, help='TCP port to listen to (default: 2000)')
parser.add_argument('--tm_port',              default=8000, type=int, help='Traffic Manager Port (default: 8000)')
parser.add_argument('--ego-spawn', type=list, default=None, help='[x,y] in world coordinate')
parser.add_argument('--save-path',            default='存储路径', help='Synchronous mode execution')
args = parser.parse_args()

# 图片大小可自行修改
IM_WIDTH = 500
IM_HEIGHT= 500


actor_list, sensor_list = [], []
sensor_type = ['sem']
def main(args):
    # We start creating the client
    client = carla.Client(args.host, args.port)
    client.set_timeout(5.0)
    
    world = client.get_world()
    #world = client.load_world('Town04')
  
    
    
    blueprint_library = world.get_blueprint_library()
    try:
        original_settings = world.get_settings()
        settings = world.get_settings()

        # We set CARLA syncronous mode
        settings.fixed_delta_seconds = 0.05
        settings.synchronous_mode = True
        world.apply_settings(settings)
        spectator = world.get_spectator()

        # 手动规定
        # transform_vehicle = carla.Transform(carla.Location(0, 10, 0), carla.Rotation(0, 0, 0))
        # 自动选择
        transform_vehicle = random.choice(world.get_map().get_spawn_points())
        ego_vehicle = world.spawn_actor(random.choice(blueprint_library.filter("model3")), transform_vehicle)
        actor_list.append(ego_vehicle)

        #-------------------------- 添加语义分割相机--------------------------#
        sensor_queue = Queue()
        sem_bp = blueprint_library.find('sensor.camera.semantic_segmentation')
        sem_bp.set_attribute("image_size_x",f"{IM_WIDTH}")
        sem_bp.set_attribute("image_size_y",f"{IM_HEIGHT}")
        sem_bp.set_attribute("fov",str(60))
        #场视角,需要组成环视需要“360/场视角”个摄像头,这里展示两个摄像头的效果

        # Yaw(偏航):欧拉角向量的y轴
        # Pitch(俯仰):欧拉角向量的x轴
        # Roll(翻滚): 欧拉角向量的z轴
        # sem_transform = carla.Transform(carla.Location(0,0,10),carla.Rotation(0,0,0))
        sem01 = world.spawn_actor(sem_bp,carla.Transform(carla.Location(0,0,1.8),carla.Rotation(yaw=60 )),attach_to=ego_vehicle)
        sem01.listen(lambda data: sensor_callback(data, sensor_queue, "sem_01"))
        sensor_list.append(sem01)
        sem02 = world.spawn_actor(sem_bp,carla.Transform(carla.Location(0,0,1.8),carla.Rotation(yaw=0)),attach_to=ego_vehicle)
        sem02.listen(lambda data: sensor_callback(data, sensor_queue, "sem_02"))
        sensor_list.append(sem02) 
        sem03 = world.spawn_actor(sem_bp,carla.Transform(carla.Location(0,0,1.8),carla.Rotation(yaw=-60)),attach_to=ego_vehicle)
        sem03.listen(lambda data: sensor_callback(data, sensor_queue, "sem_03"))
        sensor_list.append(sem03)   
        
        #-------------------------- 设置完毕 --------------------------#

        # 设置traffic manager
        tm = client.get_trafficmanager(args.tm_port)
        tm.set_synchronous_mode(True)
        # 是否忽略红绿灯
        # tm.ignore_lights_percentage(ego_vehicle, 100)
        # 如果限速30km/h -> 30*(1-10%)=27km/h
        tm.global_percentage_speed_difference(10.0)
        ego_vehicle.set_autopilot(True, tm.get_port())

        while True:
            # Tick the server
            world.tick()
            
            # 将CARLA界面摄像头跟随车动
            loc = ego_vehicle.get_transform().location
            spectator.set_transform(carla.Transform(carla.Location(x=loc.x,y=loc.y,z=35),carla.Rotation(yaw=0,pitch=-90,roll=0)))

            w_frame = world.get_snapshot().frame
            print("\nWorld's frame: %d" % w_frame)
            try:
                sems = []
                for i in range (0, len(sensor_list)):
                    s_frame, s_name, s_data = sensor_queue.get(True, 1.0)
                    print("    Frame: %d   Sensor: %s" % (s_frame, s_name))
                    sensor_type = s_name.split('_')[0]
                    if sensor_type == 'sem':
                        sems.append(process_semantic(s_data))    

                   
                # 仅用来可视化 可注释
                rgb=np.concatenate(sems, axis=1)[...,:3] # 合并图像
                
                cv2.imshow('vizs', visualize_data(rgb))
                cv2.waitKey(100)
                if rgb is None or args.save_path is not None:
                    # 检查是否有各自传感器的文件夹
                    mkdir_folder(args.save_path)
                    filename = args.save_path +'rgb/'+str(w_frame)+'.png'
                    cv2.imwrite(filename, np.array(rgb[...,::-1]))
                
            except Empty:
                print("    Some of the sensor information is missed")

    finally:
        world.apply_settings(original_settings)
        tm.set_synchronous_mode(False)
        for sensor in sensor_list:
            sensor.destroy()
        for actor in actor_list:
            actor.destroy()
        print("All cleaned up!")

def mkdir_folder(path):
    for s_type in sensor_type:
        if not os.path.isdir(os.path.join(path, s_type)):
            os.makedirs(os.path.join(path, s_type))
    return True

def sensor_callback(sensor_data, sensor_queue, sensor_name):
    # Do stuff with the sensor_data data like save it to disk
    # Then you just need to add to the queue
    sensor_queue.put((sensor_data.frame, sensor_name, sensor_data))

# modify from world on rail code
def visualize_data(rgb,  text_args=(cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255,255,255), 1)):
    canvas = np.array(rgb[...,::-1])
    return canvas

# modify from manual control
def process_semantic(image):
    image.convert(carla.ColorConverter.CityScapesPalette)
    array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))
    array = np.reshape(array, (image.height, image.width, 4))
    array = array[:, :, :3]
    return array

if __name__ == "__main__":
    try:
        main(args)
    except KeyboardInterrupt:
        print(' - Exited by user.')

三、效果展示  

​​​​​​​​​​​​​​

carla segmentation语义分割相机运行录制

​​​​​​​

四、拓展:什么是语义分割

        图像语义分割(semantic segmentation),从字面意思上理解就是让计算机根据图像的语义来进行分割,例如让计算机在输入下面左图的情况下,能够输出右图。语义在语音识别中指的是语音的意思,在图像领域,语义指的是图像的内容,对图片意思的理解,比如左图的语义就是三个人骑着三辆自行车;分割的意思是从像素的角度分割出图片中的不同对象,对原图中的每个像素都进行标注,比如右图中粉红色代表人,绿色代表自行车。

语义分割当前应用

目前语义分割的应用领域主要有:

  • 地理信息系统
  • 无人车驾驶
  • 医疗影像分析
  • 机器人等领域

地理信息系统:可以通过训练神经网络让机器输入卫星遥感影像,自动识别道路,河流,庄稼,建筑物等,并且对图像中每个像素进行标注。(下图左边为卫星遥感影像,中间为真实的标签,右边为神经网络预测的标签结果,可以看到,随着训练加深,预测准确率不断提升。使用ResNet FCN网络进行训练)

**无人车驾驶:**语义分割也是无人车驾驶的核心算法技术,车载摄像头,或者激光雷达探查到图像后输入到神经网络中,后台计算机可以自动将图像分割归类,以避让行人和车辆等障碍。

**医疗影像分析:**随着人工智能的崛起,将神经网络与医疗诊断结合也成为研究热点,智能医疗研究逐渐成熟。在智能医疗领域,语义分割主要应用有肿瘤图像分割,龋齿诊断等。(下图分别是龋齿诊断,头部CT扫描紧急护理诊断辅助和肺癌诊断辅助)
 拓展知识链接:计算机视觉之语义分割

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
上一篇 2022年5月17日 上午11:07
下一篇 2022年5月17日 上午11:11

相关推荐

本站注重文章个人版权,不会主动收集付费或者带有商业版权的文章,如果出现侵权情况只可能是作者后期更改了版权声明,如果出现这种情况请主动联系我们,我们看到会在第一时间删除!本站专注于人工智能高质量优质文章收集,方便各位学者快速找到学习资源,本站收集的文章都会附上文章出处,如果不愿意分享到本平台,我们会第一时间删除!