- 运行并测试三好学生问题代码,根据实验分析学习率对网络的影响。
- 若某校三好学生在评判准则为德育分、智育分、体育分和社会实践构成,有三位学生的分数分别如下。试使用神经网络求解每一项分数的权重。
德育分 智育分 体育分 社会实践 总分 90 80 80 70 84 80 90 100 90 86 90 100 70 100 92 三好学生代码(TensorFlow 1.x):
import tensorflow as tf x1 = tf.placeholder(dtype=tf.float32) x2 = tf.placeholder(dtype=tf.float32) x3 = tf.placeholder(dtype=tf.float32) w1 = tf.Variable(0.1, dtype=tf.float32) w2 = tf.Variable(0.1, dtype=tf.float32) w3 = tf.Variable(0.1, dtype=tf.float32) n1 = x1 * w1 n2 = x2 * w2 n3 = x3 * w3 y = n1 + n2 + n3 sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) result = sess.run([x1, x2, x3, w1, w2, w3, y], feed_dict={x1: 90, x2: 80, x3: 70}) print(result) yTrain = tf.placeholder(dtype=tf.float32) loss = tf.abs(y - yTrain) optimizer = tf.train.RMSPropOptimizer(0.001) train = optimizer.minimize(loss) result = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 90, x2: 80, x3: 70, yTrain: 85}) print(result) result = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 98, x2: 95, x3: 87, yTrain: 96}) print(result) for i in range(5000): result = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 90, x2: 80, x3: 70, yTrain: 85}) print(result) result = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 98, x2: 95, x3: 87, yTrain: 96}) print(result)
若是TensorFlow 2.x的版本,需要修改代码,运行如下代码:
import tensorflow as tf # 定义变量 w1 = tf.Variable(0.1, dtype=tf.float32) w2 = tf.Variable(0.1, dtype=tf.float32) w3 = tf.Variable(0.1, dtype=tf.float32) # 定义模型函数 def model(x1, x2, x3): n1 = x1 * w1 n2 = x2 * w2 n3 = x3 * w3 y = n1 + n2 + n3 return y # 定义损失函数 def loss_function(y_pred, y_true): return tf.abs(y_pred - y_true) # 选择优化器 optimizer = tf.optimizers.RMSprop(0.001) # 训练步骤函数 def train_step(x1, x2, x3, y_true): with tf.GradientTape() as tape: y_pred = model(x1, x2, x3) loss = loss_function(y_pred, y_true) gradients = tape.gradient(loss, [w1, w2, w3]) optimizer.apply_gradients(zip(gradients, [w1, w2, w3])) return loss # 示例数据和训练 x1_data = tf.constant([90, 98], dtype=tf.float32) x2_data = tf.constant([80, 95], dtype=tf.float32) x3_data = tf.constant([70, 87], dtype=tf.float32) y_train_data = tf.constant([85, 96], dtype=tf.float32) # 运行训练循环 for i in range(5000): loss = train_step(x1_data, x2_data, x3_data, y_train_data) if i % 100 == 0: print(f"Iteration {i}, Loss: {loss.numpy()}") # 检查最终的权重和损失 y_pred = model(x1_data, x2_data, x3_data) final_loss = loss_function(y_pred, y_train_data) print(f"Final weights: {w1.numpy()}, {w2.numpy()}, {w3.numpy()}") print(f"Final loss: {final_loss.numpy()}")
分析权重代码(TensorFlow版本为2.x):
import tensorflow as tf # 定义变量 w1 = tf.Variable(0.1, dtype=tf.float32) w2 = tf.Variable(0.1, dtype=tf.float32) w3 = tf.Variable(0.1, dtype=tf.float32) w4 = tf.Variable(0.1, dtype=tf.float32) # 定义模型函数 def model(x1, x2, x3,x4): n1 = x1 * w1 n2 = x2 * w2 n3 = x3 * w3 n4 = x4 * w4 y = n1 + n2 + n3 + n4 return y # 定义损失函数 def loss_function(y_pred, y_true): return tf.abs(y_pred - y_true) # 选择优化器 optimizer = tf.optimizers.RMSprop(0.001) # 训练步骤函数 def train_step(x1, x2, x3, x4,y_true): with tf.GradientTape() as tape: y_pred = model(x1, x2, x3,x4) loss = loss_function(y_pred, y_true) gradients = tape.gradient(loss, [w1, w2, w3,w4]) optimizer.apply_gradients(zip(gradients, [w1, w2, w3,w4])) return loss # 示例数据和训练 x1_data = tf.constant([90, 80,90], dtype=tf.float32) x2_data = tf.constant([80, 90,100], dtype=tf.float32) x3_data = tf.constant([80, 100,70], dtype=tf.float32) x4_data = tf.constant([70, 90,100], dtype=tf.float32) y_train_data = tf.constant([84, 86,92], dtype=tf.float32) # 运行训练循环 for i in range(5000): loss = train_step(x1_data, x2_data, x3_data,x4_data, y_train_data) if i % 100 == 0: print(f"Iteration {i}, Loss: {loss.numpy()}") # 检查最终的权重和损失 y_pred = model(x1_data, x2_data, x3_data,x4_data) final_loss = loss_function(y_pred, y_train_data) print(f"Final weights: {w1.numpy()}, {w2.numpy()}, {w3.numpy()},{w4.numpy()}") print(f"Final loss: {final_loss.numpy()}")
最终的权重为:
ω1=0.5046337842941284
ω2= 0.25738802552223206
ω3=0.10077429562807083
ω4=0.13746078312397003
作者:henu 21级 计算机与信息工程学院 空午
版权声明:本文为博主作者:空午原创文章,版权归属原作者,如果侵权,请联系我们删除!