tf-idf原理 & TfidfVectorizer参数详解及实战

        

目录


        tf-idf作为文体特征提取的常用统计方法之一,适合用于文本分类任务,本文从原理、参数详解及实战全方位详解tf-idf,掌握本篇即可轻松上手并用于文本数据分类。

一、原理

        tf 表示词频(某单词在某文本中的出现次数/该文本中所有词的词数),idf表示逆文本频率(语料库中包含某单词的文本数、的倒数、取log),tf-idf则表示词频 * 逆文档频率,tf-idf认为词的重要性随着它在文本中出现的次数成正比增加,但同时会随着它在整个语料库中出现的频率成反比下降。

        idf表达式如下,其中k为包含某词的文本数,n为整个语料库的文本数

 tf-idf原理 & TfidfVectorizer参数详解及实战

        对idf进行平滑、避免出现极大/极小值(smooth_idf=True)

tf-idf原理 & TfidfVectorizer参数详解及实战

二、实战

sklearn中提供的文本处理方法

(1) : 将文本文档集合转换为词频/字符频数矩阵,在单个类中实现了 tokenization (字符级+词级分词)、n-grams、剔除停用词、筛选高频词和 occurrence counting (频数统计)

(2) :将词频/字符频数矩阵转换为标准化的 tf 或 tf-idf 矩阵,Tf 表示词频、而 tf-idf 表示词频乘以逆文档频率,常用于文本分类。

(3)TfidfVectorizer:直接将原始文档集合转换为tf-idf 特征矩阵,将 CountVectorizer 和TfidfTransformer的所有功能组合在一个模型中。

实际应用结果如下图(1-grams + 2-grams):

本文通过使用例子实战,展示这几类的使用方法及功能,以及详细的参数解释、方便不同需求下自行使用。

tf-idf原理 & TfidfVectorizer参数详解及实战

1、导包

import warnings 
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer,TfidfVectorizer

 2、初始化词频向量/tf_idf的训练参数

        由于存在功能组合的问题,TfidfVectorizer参数=CountVectorizer参数+TfidfTransformer参数,因此初始化参数函数将三部分参数汇总,通过设置传参label、用于确定所需要返回的参数字典。

def init_params(label='TfidfVectorizer'):
    params_count={
        'analyzer': 'word',  # 取值'word'-分词结果为词级、'char'-字符级(结果会出现he is,空格在中间的情况)、'char_wb'-字符级(以单词为边界),默认值为'word'
        'binary': False,  # boolean类型,设置为True,则所有非零计数都设置为1.(即,tf的值只有0和1,表示出现和不出现)
        'decode_error': 'strict',
        'dtype': np.float64, # 输出矩阵的数值类型
        'encoding': 'utf-8',
        'input': 'content', # 取值filename,文本内容所在的文件名;file,序列项必须有一个'read'方法,被调用来获取内存中的字节;content,直接输入文本字符串
        'lowercase': True, # boolean类型,计算之前是否将所有字符转换为小写。
        'max_df': 1.0, # 词汇表中忽略文档频率高于该值的词;取值在[0,1]之间的小数时表示文档频率的阈值,取值为整数时(>1)表示文档频数的阈值;如果设置了vocabulary,则忽略此参数。
        'min_df': 1, # 词汇表中忽略文档频率低于该值的词;取值在[0,1]之间的小数时表示文档频率的阈值,取值为整数时(>1)表示文档频数的阈值;如果设置了vocabulary,则忽略此参数。
        'max_features': None, # int或 None(默认值).设置int值时建立一个词汇表,仅用词频排序的前max_features个词创建语料库;如果设置了vocabulary,则忽略此参数。
        'ngram_range': (1, 2),  # 要提取的n-grams中n值范围的下限和上限,min_n <= n <= max_n。
        'preprocessor': None, # 覆盖预处理(字符串转换)阶段,同时保留标记化和 n-gram 生成步骤。仅适用于analyzer不可调用的情况。
        'stop_words': 'english', # 仅适用于analyzer='word'。取值english,使用内置的英语停用词表;list,自行设置停停用词列表;默认值None,不会处理停用词
        'strip_accents': None,
        'token_pattern': '(?u)\\b\\w\\w+\\b', # 分词方式、正则表达式,默认筛选长度>=2的字母和数字混合字符(标点符号被当作分隔符)。仅在analyzer='word'时使用。
        'tokenizer': None, # 覆盖字符串标记化步骤,同时保留预处理和 n-gram 生成步骤。仅适用于analyzer='word'
        'vocabulary': None, # 自行设置词汇表(可设置字典),如果没有给出,则从输入文件/文本中确定词汇表
    }
    params_tfidf={
        'norm': None, # 输出结果是否标准化/归一化。l2:向量元素的平方和为1,当应用l2范数时,两个向量之间的余弦相似度是它们的点积;l1:向量元素的绝对值之和为1
        'smooth_idf': True, # 在文档频率上加1来平滑 idf ,避免分母为0
        'sublinear_tf': False, # 应用次线性 tf 缩放,即将 tf 替换为 1 + log(tf)
        'use_idf': True, # 是否计算idf,布尔值,False时idf=1。
    }
    if label=='CountVectorizer':
        return params_count
    elif label=='TfidfTransformer':
        return params_tfidf
    elif label=='TfidfVectorizer':
        params_count.update(params_tfidf)
        return params_count

3、CountVectorizer训练及应用函数

def CountVectorizer_train(train_data,params):
    cv = CountVectorizer(**params)
    # 输入训练集矩阵,每行表示一个文本

    # 训练,构建词汇表以及词项idf值,并将输入文本列表转成VSM矩阵形式
    cv_fit = cv.fit_transform(train_data)
    return cv
def CountVectorizer_apply(model):
    print('词汇表')
    print(model.vocabulary_)
    print('------------------------------')
    
    print('特证名/词汇列表')
    print(model.get_feature_names())
    print('------------------------------')
    
    print('idf_列表')
    print(model.idf_)
    print('------------------------------')
    
    data=['Tokyo Japan Chinese']
    print('{} 文本转化VSM矩阵'.format(data))
    print(model.transform(data).toarray())
    print('------------------------------')
    
    print('转化结果输出为dataframe')
    print(pd.DataFrame(model.transform(data).toarray(),columns=model.get_feature_names()))
    print('------------------------------')
    
    print('model参数查看')
    print(model.get_params())
    print('------------------------------')

4、CountVectorizer使用

train_data = ["Chinese Beijing Chinese",
              "Chinese Chinese Shanghai",
              "Chinese Macao",
              "Tokyo Japan Chinese"]

params=init_params('CountVectorizer')
cv_model=CountVectorizer_train(train_data,params)
CountVectorizer_apply(cv_model)

查看结果可以发现,VSM矩阵并不是词频统计,其实是tf-idf的结果

tf-idf原理 & TfidfVectorizer参数详解及实战

5、TfidfTransformer训练及应用函数

def TfidfTransformer_train(train_data,params):
    tt = TfidfTransformer(**params)
    tt_fit = tt.fit_transform(train_data)
    return tt
def TfidfTransformer_apply(model):
    print('idf_列表')
    print(model.idf_)
    print('------------------------------')
    
    data=[[1, 1, 0, 2, 1, 1, 0, 1]]
    print('词频列表{} 转化VSM矩阵'.format(data))
    print(model.transform(data).toarray())
    print('------------------------------')
    
    print('model参数查看')
    print(model.get_params())
    print('------------------------------')

train_data=[[1, 1, 1, 0, 1, 1, 1, 0],
       [1, 1, 0, 1, 1, 1, 0, 1]]

params=init_params('TfidfTransformer')
tt_model=TfidfTransformer_train(train_data,params)
TfidfTransformer_apply(tt_model)

6、TfidfTransformer训练及应用函数

def TfidfVectorizer_train(train_data,params):
    tv = TfidfVectorizer(**params)
    # 输入训练集矩阵,每行表示一个文本

    # 训练,构建词汇表以及词项idf值,并将输入文本列表转成VSM矩阵形式
    tv_fit = tv.fit_transform(train_data)
    return tv
def TfidfVectorizer_apply(tv_model):
    print('tv_model词汇表')
    print(tv_model.vocabulary_)
    print('------------------------------')
    
    print('tv_model特证名/词汇列表')
    print(tv_model.get_feature_names())
    print('------------------------------')
    
    print('idf_列表')
    print(tv_model.idf_)
    print('------------------------------')
    
    data=['Tokyo Japan Chinese']
    print('{} 文本转化VSM矩阵'.format(data))
    print(tv_model.transform(data).toarray())
    print('------------------------------')
    
    print('转化结果输出为dataframe')
    print(pd.DataFrame(tv_model.transform(data).toarray(),columns=tv_model.get_feature_names()))
    print('------------------------------')
    
    print('tv_model参数查看')
    print(tv_model.get_params())
    print('------------------------------')


train_data = ["Chinese Beijing Chinese",
              "Chinese Chinese Shanghai",
              "Chinese Macao",
              "Tokyo Japan Chinese"]

params=init_params('TfidfVectorizer')
tv_model=TfidfVectorizer_train(train_data,params)
TfidfVectorizer_apply(tv_model)

tf-idf原理 & TfidfVectorizer参数详解及实战

将train_data的tf-idf矩阵转化为dataframe结果

pd.DataFrame(tv_model.transform(train_data).toarray(),
                columns=tv_model.get_feature_names())

tf-idf原理 & TfidfVectorizer参数详解及实战

三、划重点

少走10年弯路

        关注公众号Python风控模型与数据分析,回复 tfidf实战 获取本篇的.py代码,不用动手直接调用、它不香吗?

        还有更多理论、代码分享,没有任何保留的输出、不值得一个关注吗?

tf-idf原理 & TfidfVectorizer参数详解及实战

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2023年3月4日 上午10:38
下一篇 2023年3月4日 上午10:44

相关推荐

此站出售,如需请站内私信或者邮箱!