【C++练级之路】【Lv.15】AVL树(双子旋转,领略绝对平衡之美)

快乐的流畅:个人主页

个人专栏:《C语言》《数据结构世界》《进击的C++》
远方有一堆篝火,在为久候之人燃烧!

文章目录

  • 引言
  • 一、AVL树的概念
  • 二、AVL树的模拟实现
    • 2.1 结点
    • 2.2 成员变量
    • 2.3 插入
    • 2.4 旋转
      • 2.4.1 左单旋
      • 2.4.2 右单旋
      • 2.4.3 左右旋
      • 2.4.4 右左旋
  • 三、AVL树的验证
  • 四、AVL树的性能
    • 4.1 优势
    • 4.2 缺陷
    • 4.3 适用场景

引言

之前讲解了二叉搜索树,最优情况下它具有非常好的搜索性能,但是在极端场景下,它可能退化为单支树,可以形象地称为歪脖子树~


这样的话,它搜索的时间复杂度会从O(log2N)退化为O(N2),完全丧失了其优良的搜索性能。那么AVL树就可以登场了,它就是为解决这类问题而生的!

一、AVL树的概念

两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了AVL树,AVL树满足两条性质:

  • 它的左右子树都是AVL树
  • 任意结点的左右子树高度差的绝对值不超过1

这样通过控制子树高度差,让AVL树几乎完美接近于平衡,便不会出现单支树的情况,保证了优良的搜索性能,因此AVL树又称为高度平衡二叉搜索树

二、AVL树的模拟实现

2.1 结点

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	int _bf;//balance factor

	AVLTreeNode(const pair<K, V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}
};

细节:

  1. 使用三叉链,增加了指向parent的指针
  2. 使用KV模型,数据存储键值对pair
  3. 结点存储平衡因子,用来记录左右子树高度差

注:平衡因子计算高度差,是 右子树高度 – 左子树高度

2.2 成员变量

template<class K, class V>
class AVLTree
{
protected:
	typedef AVLTreeNode<K, V> Node;
public:
protected:
	Node* _root = nullptr;
};

2.3 插入

因为AVL树也是二叉搜索树,所以默认成员函数和遍历与之前写的没什么不同,这里重点讲解AVL树的插入。

bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

	cur = new Node(kv);
	if (parent->_kv.first < kv.first)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}
	cur->_parent = parent;

	while (parent)//讨论平衡因子
	{
		if (cur == parent->_right)
		{
			++parent->_bf;
		}
		else
		{
			--parent->_bf;
		}

		if (parent->_bf == 1 || parent->_bf == -1)
		{
			parent = parent->_parent;
			cur = cur->_parent;
		}
		else if (parent->_bf == 0)
		{
			break;
		}
		else if (parent->_bf == 2 || parent->_bf == -2)
		{
			//旋转
			if (parent->_bf == 2 && cur->_bf == 1)
			{
				RotateL(parent);
			}
			else if (parent->_bf == -2 && cur->_bf == -1)
			{
				RotateR(parent);
			}
			else if (parent->_bf == -2 && cur->_bf == 1)
			{
				RotateLR(parent);
			}
			else if (parent->_bf == 2 && cur->_bf == -1)
			{
				RotateRL(parent);
			}
			else
			{
				assert(false);
			}
			break;
		}
		else
		{
			assert(false);
		}
	}

	return true;
}

思路:

  1. 以二叉搜索树的方式正常插入
  2. 讨论平衡因子,以及调整结构

这里的重点在于如何讨论和调整平衡因子(bf)。

  1. 首先,插入cur结点,调整parent结点的bf,左减右加
  2. 讨论parent的bf
    • bf为0
    • bf为1或-1
    • bf为2或-2

bf为0时:

分析:此时没有增加高度,而是补上缺口,整棵树是平衡的,直接break即可

bf为1或-1时:

分析:此时增加了局部子树的高度,不确定有没有影响整体的高度差,所以要继续向上调整

parent = parent->_parent;
cur = cur->_parent;

bf为2或-2时:

此时bf已经超出平衡限制区间,需要进行结构调整,我们称之为旋转

2.4 旋转

旋转分为两大类:单旋和双旋。而单旋分为左单旋和右单旋,双旋分为左右旋和右左旋。

2.4.1 左单旋

场景:右部外侧插入

过程:

  1. parent接过subR的左子树subRL
  2. subR左边再链接parent
void RotateL(Node* parent)//左单旋
{
	Node* grandparent = parent->_parent;
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	parent->_right = subRL;
	if (subRL)
	{
		subRL->_parent = parent;
	}

	subR->_left = parent;
	parent->_parent = subR;

	if (grandparent)
	{
		if (grandparent->_right == parent)
		{
			grandparent->_right = subR;
		}
		else
		{
			grandparent->_left = subR;
		}
	}
	else
	{
		_root = subR;
	}
	subR->_parent = grandparent;

	parent->_bf = subR->_bf = 0;
}

细节:

  1. 大体是三步链接,注意双向链接
  2. 注意判空(subRL,grandparent)
  3. 如果判空,注意_root的传递
  4. 最后调整平衡因子_bf

2.4.2 右单旋

场景:左部外侧插入

过程:

  1. parent接过subL的右子树subLR
  2. subL右边再链接parent
void RotateR(Node* parent)//右单旋
{
	Node* grandparent = parent->_parent;
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	parent->_left = subLR;
	if (subLR)
	{
		subLR->_parent = parent;
	}

	subL->_right = parent;
	parent->_parent = subL;

	if (grandparent)
	{
		if (grandparent->_right == parent)
		{
			grandparent->_right = subL;
		}
		else
		{
			grandparent->_left = subL;
		}
	}
	else
	{
		_root = subL;
	}
	subL->_parent = grandparent;

	parent->_bf = subL->_bf = 0;
}

细节:同左单旋

2.4.3 左右旋

场景:左部内侧插入

过程:

  1. 先对subL进行左单旋
  2. 再对parent进行右单旋
void RotateLR(Node* parent)//左右旋
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf;

	RotateL(subL);
	RotateR(parent);

	if (bf == 1)
	{
		subL->_bf = -1;
		subLR->_bf = 0;
		parent->_bf = 0;
	}
	else if (bf == -1)
	{
		subL->_bf = 0;
		subLR->_bf = 0;
		parent->_bf = 1;
	}
	else if (bf == 0)
	{
		subL->_bf = 0;
		subLR->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

细节:

  1. 这里旋转直接复用前面单旋的代码
  2. 主要的重点,在于平衡因子bf的讨论
    • bf为1,在subLR的右侧插入
    • bf为-1,在subLR的左侧插入
    • bf为0,插入subLR(之前为空)

2.4.4 右左旋

场景:右部内侧插入

过程:

  1. 先对subR进行右单旋
  2. 再对parent进行左单旋
void RotateRL(Node* parent)//右左旋
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;

	RotateR(subR);
	RotateL(parent);

	if (bf == 1)
	{
		parent->_bf = -1;
		subRL->_bf = 0;
		subR->_bf = 0;
	}
	else if (bf == -1)
	{
		parent->_bf = 0;
		subRL->_bf = 0;
		subR->_bf = 1;
	}
	else if (bf == 0)
	{
		parent->_bf = 0;
		subRL->_bf = 0;
		subR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

细节:同左右旋

综上所述,旋转的目的保证平衡,同时降低树的高度

三、AVL树的验证

我们主要验证左右子树高度是否平衡,即高度差是否小于等于1

bool IsBalance()
{
	return _IsBalance(_root);
}

int Height(Node* root)
{
	if (root == nullptr)
	{
		return 0;
	}

	int leftH = Height(root->_left);
	int rightH = Height(root->_right);

	return leftH > rightH ? leftH + 1 : rightH + 1;
}

bool _IsBalance(Node* root)
{
	if (root == nullptr)
	{
		return true;
	}

	int leftH = Height(root->_left);
	int rightH = Height(root->_right);

	if (rightH - leftH != root->_bf)
	{
		cout << root->_kv.first << "节点平衡因子异常" << endl;
		return false;
	}

	return abs(rightH - leftH) <= 1
		&& _IsBalance(root->_left)
		&& _IsBalance(root->_right);
}

细节:

  1. 为了方便计算高度,写一个Height函数
  2. 在子函数递归中,计算高度差是否小于等于1
  3. 与此同时,还要检查平衡因子是否正常

四、AVL树的性能

4.1 优势

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即【C++练级之路】【Lv.15】AVL树(双子旋转,领略绝对平衡之美)

4.2 缺陷

但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。

4.3 适用场景

因此,如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

真诚点赞,手有余香

版权声明:本文为博主作者:快乐的流畅原创文章,版权归属原作者,如果侵权,请联系我们删除!

原文链接:https://blog.csdn.net/2301_79188764/article/details/136895591

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
心中带点小风骚的头像心中带点小风骚普通用户
上一篇 2024年4月10日
下一篇 2024年4月10日

相关推荐