【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)

快乐的流畅:个人主页

个人专栏:《C语言》《数据结构世界》《进击的C++》
远方有一堆篝火,在为久候之人燃烧!

文章目录

  • 引言
  • 一、红黑树的概念
  • 二、红黑树的模拟实现
    • 2.1 结点
    • 2.2 成员变量
    • 2.3 插入
      • 情况一:uncle在左,parent在右
        • ==如果uncle存在且为红色==:
        • ==如果uncle不存在,或者存在且为黑色==:
      • 情况二:parent在左,uncle在右
        • ==如果uncle存在且为红色==:
        • ==如果uncle不存在,或者存在且为黑色==:
  • 三、红黑树的验证
  • 四、红黑树的性能
    • 4.1 优势
    • 4.2 适用场景

引言

之前学习的AVL树,是一种平衡二叉搜索树,它追求绝对平衡,从而导致插入和删除性能较差。而今天学习的红黑树,是另一种平衡二叉搜索树,它追求相对平衡,使得增删查改的性能都极佳,时间复杂度皆为O(log2N),是数据结构中的精华,天才般的设想!

一、红黑树的概念

红黑树,顾名思义,其节点有红和黑两种颜色。

之所以新增结点颜色的标记,是因为通过结点着色方式的限制,能够让红黑树的最长路径不超过最短路径的两倍,以保证相对平衡。

红黑树满足五条性质:

  1. 所有结点非黑即红
  2. 根结点为黑色
  3. NIL结点为黑色
  4. 红色结点的子结点必为黑色
  5. 任意结点到其叶子NIL结点的所有路径,都包含相同的黑色结点

在红黑树中,NIL节点(也称为空节点)是叶子节点的一种特殊表示。它们不是实际存储数据的节点,而是树结构中的占位符,用于定义树的边界。所有的红黑树都以NIL节点为叶子节点,这些NIL节点在视觉上通常不被画出来。

性质解读:

  • 性质4:表明不能有连续的红色结点
  • 性质4+性质5:
    • 理论最短路径:全为黑色结点
    • 理论最长路径:红黑相间

这样,就保证了最长路径不超过最短路径的两倍。

二、红黑树的模拟实现

2.1 结点

enum Color
{
	RED,
	BLACK
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Color _col;

	RBTreeNode(const pair<K, V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

细节:

  1. 使用三叉链,增加了指向parent的指针
  2. 使用KV模型,数据存储键值对pair
  3. 结点储存颜色,同时颜色使用枚举
  4. 结点的颜色初始化为红色

说明:为什么结点的颜色初始化为红色呢?因为插入新节点时(不为根部),如果插入黑色,就会直接破坏性质5,导致每条路径黑结点数目不同;而如果插入红色,有可能不会破坏性质4,所以结点初始化为红色更优。

2.2 成员变量

template<class K, class V>
class RBTree
{
protected:
	typedef RBTreeNode<K, V> Node;
public:
protected:
	Node* _root = nullptr;
};

2.3 插入

因为红黑树也是二叉搜索树,所以默认成员函数和遍历与之前写的没什么不同,这里重点讲解红黑树的插入。

bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		_root->_col = BLACK;
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

	cur = new Node(kv);
	if (parent->_kv.first < kv.first)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}
	cur->_parent = parent;

	while (parent && parent->_col == RED)
	{
		Node* grandparent = parent->_parent;
		if (grandparent->_right == parent)//uncle在左,parent在右
		{
			Node* uncle = grandparent->_left;
			if (uncle && uncle->_col == RED)//uncle为红,变色+向上调整
			{
				parent->_col = uncle->_col = BLACK;
				grandparent->_col = RED;

				cur = grandparent;
				parent = cur->_parent;
			}
			else//uncle为空或为黑,变色+旋转
			{
				if (parent->_right == cur)//左单旋
				{
					RotateL(grandparent);
					parent->_col = BLACK;
					grandparent->_col = RED;
				}
				else//右左旋
				{
					RotateR(parent);
					RotateL(grandparent);
					cur->_col = BLACK;
					grandparent->_col = RED;
				}
			}
		}
		else//parent在左,uncle在右
		{
			Node* uncle = grandparent->_right;
			if (uncle && uncle->_col == RED)
			{
				parent->_col = uncle->_col = BLACK;
				grandparent->_col = RED;

				cur = grandparent;
				parent = cur->_parent;
			}
			else
			{
				if (parent->_left == cur)//右单旋
				{
					RotateR(grandparent);
					parent->_col = BLACK;
					grandparent->_col = RED;
				}
				else//左右旋
				{
					RotateL(parent);
					RotateR(grandparent);
					cur->_col = BLACK;
					grandparent->_col = RED;
				}
			}
		}
	}
	_root->_col = BLACK;

	return true;
}

思路:

  1. 以二叉搜索树的方式正常插入
  2. 讨论并调整结点的颜色,以及调整结构,使之满足红黑树的性质

循环条件:while (parent && parent->_col == RED)

保证了parent存在且为红,grandparent存在且为黑

情况一:uncle在左,parent在右

如果uncle存在且为红色

处理方法:

  1. 将parent和uncle变黑,grandparent变红
  2. cur = grandparent,parent = cur->_parent,继续向上调整
  3. 防止grandparent为根节点却变红,在循环结束后将根节点变为黑色
如果uncle不存在,或者存在且为黑色

当cur在右部外侧时:

处理方法:

  1. 先对grandparent进行左单旋
  2. 再将parent变黑,grandparent变红

当cur在右部内侧时:

处理方法:

  1. 先对parent进行右单旋
  2. 再对grandparent进行左单旋
  3. 最后将cur变黑,grandparent变红

情况二:parent在左,uncle在右

如果uncle存在且为红色

处理方法:

  1. 将parent和uncle变黑,grandparent变红
  2. cur = grandparent,parent = cur->_parent,继续向上调整
  3. 防止grandparent为根节点却变红,在循环结束后将根节点变为黑色
如果uncle不存在,或者存在且为黑色

当cur在左部外侧时:

处理方法:

  1. 先对grandparent进行右单旋
  2. 再将parent变黑,grandparent变红

当cur在左部内侧时:

处理方法:

  1. 先对parent进行左单旋
  2. 再对grandparent进行右单旋
  3. 最后将cur变黑,grandparent变红

红黑树插入的核心口诀uncle存在且为红,变色+向上调整,uncle不存在或为黑,变色+旋转

附上旋转的实现

void RotateL(Node* parent)
{
	Node* grandparent = parent->_parent;
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	parent->_right = subRL;
	if (subRL)
	{
		subRL->_parent = parent;
	}

	subR->_left = parent;
	parent->_parent = subR;

	if (grandparent)
	{
		if (grandparent->_right == parent)
		{
			grandparent->_right = subR;
		}
		else
		{
			grandparent->_left = subR;
		}
	}
	else
	{
		_root = subR;
	}
	subR->_parent = grandparent;
}

void RotateR(Node* parent)
{
	Node* grandparent = parent->_parent;
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	parent->_left = subLR;
	if (subLR)
	{
		subLR->_parent = parent;
	}

	subL->_right = parent;
	parent->_parent = subL;

	if (grandparent)
	{
		if (grandparent->_right == parent)
		{
			grandparent->_right = subL;
		}
		else
		{
			grandparent->_left = subL;
		}
	}
	else
	{
		_root = subL;
	}
	subL->_parent = grandparent;
}

三、红黑树的验证

bool IsBalance()
{
	if (_root && _root->_col == RED)
	{
		cout << "根结点为红色" << endl;
		return false;
	}

	int benchMark = 0;//基准值
	Node* cur = _root;
	while (cur)
	{
		if (cur->_col == BLACK)
		{
			++benchMark;
		}
		cur = cur->_right;
	}

	return Check(_root, 0, benchMark);
}

bool Check(Node* root, int blackNum, int benchMark)
{
	if (root == nullptr)
	{
		if (blackNum != benchMark)
		{
			cout << "某条路径黑色结点数量不相等" << endl;
			return false;
		}
		return true;
	}

	if (root->_col == BLACK)
	{
		++blackNum;
	}

	if (root->_col == RED && root->_parent && root->_parent->_col == RED)
	{
		cout << "存在连续的红色结点" << endl;
		return false;
	}

	return Check(root->_left, blackNum, benchMark)
		&& Check(root->_right, blackNum, benchMark);
}

细节:

  1. 验证根节点是否为黑
  2. 先计算出一条路径的黑色结点个数作为基准值,再在递归中比较每条路径的黑色结点是否相等
  3. 若该节点为红,检测其parent是否为红,判断是否存在连续的红色节点

四、红黑树的性能

4.1 优势

红黑树是高效的平衡二叉树,增删改查的时间复杂度都是O(【C++练级之路】【Lv.16】红黑树(冰与火的碰撞,红与黑的史诗)),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对AVL树而言,降低了插入和旋转的次数

4.2 适用场景

因此,在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

真诚点赞,手有余香

版权声明:本文为博主作者:快乐的流畅原创文章,版权归属原作者,如果侵权,请联系我们删除!

原文链接:https://blog.csdn.net/2301_79188764/article/details/136907561

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
扎眼的阳光的头像扎眼的阳光普通用户
上一篇 2024年4月10日
下一篇 2024年4月10日

相关推荐