【数据结构】AVL 树

文章目录

  • 1. AVL 树的概念
  • 2. AVL 树节点的定义
  • 3. AVL 树的插入
  • 4. AVL 树的旋转
  • 5. AVL 树的验证
  • 6. AVL 树的删除
  • 7. AVL 树的性能

前面对 map / multimap / set / multiset 进行了简单的介绍【C++】map & set,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成 O(N),因此 map、set 等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

1. AVL 树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或者接近有序,二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家 G.M.Adelson-Velskii 和 E.M.Landis 在 1962 年发明了一种解决上述问题的方法:当向二叉搜索树中插入新节点后,如果能保证每个节点的左右子树高度之差的绝对值不超过 1(需要对树中的节点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵 AVL 树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是 AVL 树;
  • 左右子树高度之差(简称平衡因子)的绝对值不超过 1(-1 / 0 / 1)。

如果一棵二叉搜索树是高度平衡的,它就是 AVL 树。如果它有 n 个节点,其高度可保持在 【数据结构】AVL 树,搜索时间复杂度是 【数据结构】AVL 树

2. AVL 树节点的定义

template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _bf(0)
	{}
	
	AVLTreeNode<T>* _pLeft;		// 该节点的左孩子
	AVLTreeNode<T>* _pRight; 	// 该节点的右孩子
	AVLTreeNode<T>* _pParent; 	// 该节点的双亲
	T _data;
	int _bf; 					// 该节点的平衡因子
};

3. AVL 树的插入

AVL 树就是在二叉搜索树的基础上引入了平衡因子,因此 AVL 树也可以看成是二叉搜索树。那么 AVL 树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点;
  2. 调整节点的平衡因子。
bool Insert(const T& data)
{
	// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
	// ...
	
	// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
	
	/*
	pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
	的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
		1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
		2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可

	此时:pParent的平衡因子可能有三种情况:0,正负1,正负2
		1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
		   成0,此时满足AVL树的性质,插入成功
		2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
		   新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
		3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
		   行旋转处理
	*/

	while (pParent)
	{
		// 更新双亲的平衡因子
		if (pCur == pParent->_pLeft)
			pParent->_bf--;
		else
			pParent->_bf++;
			
		// 更新后检测双亲的平衡因子
		if (0 == pParent->_bf)
		{
			break;
		}
		else if (1 == pParent->_bf || -1 == pParent->_bf)
		{
			// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1或者-1,说明以双亲为根的二叉树
			// 的高度增加了一层,因此需要继续向上调整
			pCur = pParent;
			pParent = pCur->_pParent;
		}
		else
		{
			// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
			// 为根的树进行旋转处理
			if (2 == pParent->_bf)
			{
				// ...
			}
			else
			{
				// ...
			}
		}
	}
	return true;
}

4. AVL 树的旋转

如果在一棵原本是平衡的 AVL 树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL 树的旋转分为四种:

  1. 新节点插入较高左子树的左侧 – 左左:右单旋

    /*
    	上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
    子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子
    树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
    右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点
    的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
    	1. 30节点的右孩子可能存在,也可能不存在
    	2. 60可能是根节点,也可能是子树
    	   如果是根节点,旋转完成后,要更新根节点
    	   如果是子树,可能是某个节点的左子树,也可能是右子树
    */
    
    void _RotateR(PNode pParent)
    {
    	// pSubL: pParent的左孩子
    	// pSubLR: pParent左孩子的右孩子,注意:该
    	PNode pSubL = pParent->_pLeft;
    	PNode pSubLR = pSubL->_pRight;
    	
    	// 旋转完成之后,30的右孩子作为双亲的左孩子
    	pParent->_pLeft = pSubLR;
    	// 如果30的左孩子的右孩子存在,更新亲双亲
    	if (pSubLR)
    		pSubLR->_pParent = pParent;
    		
    	// 60 作为 30的右孩子
    	pSubL->_pRight = pParent;
    	
    	// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
    	PNode pPParent = pParent->_pParent;
    	
    	// 更新60的双亲
    	pParent->_pParent = pSubL;
    	
    	// 更新30的双亲
    	pSubL->_pParent = pPParent;
    	
    	// 如果60是根节点,根新指向根节点的指针
    	if (NULL == pPParent)
    	{
    		_pRoot = pSubL;
    		pSubL->_pParent = NULL;
    	}
    	else
    	{
    		// 如果60是子树,可能是其双亲的左子树,也可能是右子树
    		if (pPParent->_pLeft == pParent)
    			pPParent->_pLeft = pSubL;
    		else
    			pPParent->_pRight = pSubL;
    	}
    	
    	// 根据调整后的结构更新部分节点的平衡因子
    	pParent->_bf = pSubL->_bf = 0;
    }
    
  2. 新节点插入较高右子树的右侧 – 右右:左单旋

    实现及情况考虑可参考右单旋。

  3. 新节点插入较高左子树的右侧 – 左右:先左单旋再右单旋

    将双旋变成单旋后再旋转,即:先对 30 进行左单旋,然后再对 90 进行右单旋,旋转完成后再考虑平衡因子的更新。

    // 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
    void _RotateLR(PNode pParent)
    {
    	PNode pSubL = pParent->_pLeft;
    	PNode pSubLR = pSubL->_pRight;
    	
    	// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
    	int bf = pSubLR->_bf;
    	
    	// 先对30进行左单旋
    	_RotateL(pParent->_pLeft);
    	
    	// 再对90进行右单旋
    	_RotateR(pParent);
    	
    	if (1 == bf)
    		pSubL->_bf = -1;
    	else if (-1 == bf)
    		pParent->_bf = 1;
    }
    
  4. 新节点插入较高右子树的左侧 – 右左:先右单旋再左单旋

    参考左右双旋。

总结:

假如以 pParent 为根的子树不平衡,即 pParent 的平衡因子为 2 或者 -2,分以下情况考虑:

  1. pParent 的平衡因子为 2,说明 pParent 的右子树高,设 pParent 的右子树的根为 pSubR:

    • 当 pSubR 的平衡因子为 1 时,执行左单旋;
    • 当 pSubR 的平衡因子为 -1 时,执行右左双旋。
  2. pParent 的平衡因子为 -2,说明 pParent 的左子树高,设 pParent 的左子树的根为 pSubL:

    • 当 pSubL 的平衡因子为 -1 时,执行右单旋;
    • 当 pSubL 的平衡因子为 1 时,执行左右双旋。

旋转完成后,原 pParent 为根的子树高度降低,已经平衡,不需要再向上更新。

5. AVL 树的验证

AVL 树是再二叉搜索树的基础上加入了平衡性的限制,因此要验证 AVL 树,可以分两步:

  1. 验证其为二叉搜索树

    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树。

  2. 验证其为平衡树

    • 每个节点子树高度差的绝对值不超过 1(注意节点中如果没有平衡因子);

    • 节点的平衡因子是否计算正确。

      int _Height(PNode pRoot);
      bool _IsBalanceTree(PNode pRoot)
      {
      	// 空树也是AVL树
      	if (nullptr == pRoot) return true;
      	
      	// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
      	int leftHeight = _Height(pRoot->_pLeft);
      	int rightHeight = _Height(pRoot->_pRight);
      	int diff = rightHeight - leftHeight;
      	
      	// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者pRoot平衡因子的绝对值超过1,则一定不是AVL树
      	if (diff != pRoot->_bf || (diff > 1 || diff < -1))
      		return false;
      		
      	// pRoot的左和右如果都是AVL树,则该树一定是AVL树
      	return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot -> _pRight);
      }
      
  3. 验证用例

    • 常规场景

      { 16, 3, 7, 11, 9, 26, 18, 14, 15 }

    • 特殊场景

      { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 }

6. AVL 树的删除

因为 AVL 树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不过与删除不同的是,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

7. AVL 树的性能

AVL 树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过 1,这样可以保证查询时高效的时间复杂度,即 【数据结构】AVL 树。但是如果要对 AVL 树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的时在删除时,又可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑 AVL 树,但一个结构经常修改,就不太适合。


END

版权声明:本文为博主作者:字节连结原创文章,版权归属原作者,如果侵权,请联系我们删除!

原文链接:https://blog.csdn.net/m0_73156359/article/details/137209221

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
xiaoxingxing的头像xiaoxingxing管理团队
上一篇 2024年4月16日
下一篇 2024年4月16日

相关推荐

此站出售,如需请站内私信或者邮箱!