熵值法原理及python实现 附指标编制案例

文章目录

  • 1.简单理解 信息熵
  • 2.编制指标 (学术情景应用)
  • 3.python实现
    • 3.1 数据准备
    • 3.2 数据预处理
    • 3.3 熵值、权重计算
    • 3.4 编制综合评价指标

熵值法也称熵权法,是学术研究,及实际应用中的一种常用且有效的编制指标的方法。

             请添加图片描述请添加图片描述请添加图片描述

1.简单理解 信息熵

机器学习中的决策树算法是对信息熵的一种典型的应用。
在信息论中,使用 (Entropy)来描述随机变量分布的不确定性。
假设对随机变量X,其可能的取值有熵值法原理及python实现 附指标编制案例。即有n种可能发生的结果。其对应发生的概率依次为熵值法原理及python实现 附指标编制案例,则事件熵值法原理及python实现 附指标编制案例对应的信息熵为:

    熵值法原理及python实现 附指标编制案例

信息熵中log的底数通常为2,理论上可以使用不同的底数。

如何理解信息熵呢,假设已知今天是周日,则对于“明天是周几”这件事,只有一种可能的结果:是周一,且p=1。则“明天是周几”的信息熵熵值法原理及python实现 附指标编制案例熵值法原理及python实现 附指标编制案例,取信息熵的最小值0。表示“明天是周几”这个话题的不确定性很低,明天周几很确定。

再比如抛一枚硬币,则结果为正面和反面的概率都是0.5。则信息熵为熵值法原理及python实现 附指标编制案例,相比“明天周几”这件事的信息熵稍大些了。

假设某事情有100中可能的结果,每种结果发生的概率为0.01。则熵值法原理及python实现 附指标编制案例,对于等概率均匀分布的事件,不确定的结果种类越多,则熵越大。

2.编制指标 (学术情景应用)

迁移到编制指标的情形,通过下边一个简单的示例理解熵权法在学术研究中的应用。
以陈浩,刘媛华的论文《数字经济促进制造业高质量发展了吗?——基于省级面板数据和机器学习模型的实证分析》
中部分内容展示为例:


上边说到,指标的熵值计算公式为:

        熵值法原理及python实现 附指标编制案例

为了方便求变异系数,这里计算熵值的时候常常在该公式的基础上再乘以一个常数K,即

        熵值法原理及python实现 附指标编制案例

其中熵值法原理及python实现 附指标编制案例熵值法原理及python实现 附指标编制案例,n是样本的个数。易知,乘以常数后计算出的熵值,通常范围都是在区间[0,1]内的。

举个例子,假设一共有十个样本,且十个样本的连续型X指标数值非常相近,甚至完全一致。
对数的底数取10,则每个样本的权重都有接近或等于1/10。
通过公式熵值法原理及python实现 附指标编制案例计算出的熵值则为1,
然后引入一个新的指标“差异系数”来刻画数据之间的差异性大小(即使用1减去熵值得到所谓“差异系数”,不要跟变异系数混淆),

第j个指标的差异系数熵值法原理及python实现 附指标编制案例(H_j为第j个指标的熵值)

计算可知差异系数为0。则说明该指标在数值上不存在任何差异(雀食如此)。
随着数据本身数值上的差距的提升,指标的熵值会逐步减小,差异系数逐渐增大。这样说相信很容易理解了。

指标的熵值越小(差异系数越大),则该指标在最终要编制的指标中所占的权重则越大。

具体的权重计算公式为:
         熵值法原理及python实现 附指标编制案例

即某指标差异系数占所有指标差异系数和的比重。

上图的情景中,作者首先对二级指标进行衡量,然后使用熵权法,求出每个二级指标的熵值,进而求出权重,分别计算出四个一级指标;
然后再对四个一级指标再次使用熵权法计算权重,进而得到最终指标:制造业高质量发展水平

3.python实现

3.1 数据准备

为方便读者测试,这边手动生成一段数据作为示例。
将指标1,指标2,指标3,指标4,合并编制为一个“综合指标”。

import pandas as pd
import numpy as np

# 1. 初始数据 假设指标4是负向指标,其余三个为正向指标
df1 = pd.DataFrame({'指标1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                    '指标2': [2, 4, 6, 8, 10, 2, 4, 6, 8, 10],
                    '指标3': [1, 2, 1, 3, 2, 1, 3, 2, 3, 1],
                    '指标4': [3, 1, 2, 3, 5, 8, 7, 8, 8, 9]
                   })
print(df1)            

数据为DataFrame格式,效果展示如下:
           

3.2 数据预处理

然后是数据预处理部分,这里定义一个泛用性较强的标准化处理函数,
该函数对于正向指标和负向指标(越大越好的指标和越小越好的指标),可以分别进行不同的处理。
(处理逻辑通过代码可以很容易看出)
同时该函数也可以兼容只进行其中一种处理的情景。

# 2.数据预处理 定义标准化处理函数
def Standardization(data,cols1=None, cols2=None):
    """
    :param data:目标数据
    :param cols1: 需要处理的正向指标列名列表,类型为列表或None [col1, col2, col3]
    :param cols2: 需要处理的负向指标列名列表,类型为列表或None [col1, col2, col3]
    :return: 输出处理结果
    """
    if cols1 == None and cols2 == None:
        return data
    elif cols1 != None and cols2 == None:
        return (data[cols1] - data[cols1].min())/(data[cols1].max()-data[cols1].min())
    elif cols1 == None and cols2 != None:
        return (data[cols2].max - data[cols2])/(data[cols2].max()-data[cols2].min())
    else:
        a = (data[cols1] - data[cols1].min())/(data[cols1].max()-data[cols1].min())
        b = (data[cols2].max() - data[cols2])/(data[cols2].max()-data[cols2].min())
        return pd.concat([a, b], axis=1)

调用函数,进行标准化处理:

df2 = Standardization(df1, cols1=['指标1', "指标2", "指标3"], cols2=['指标4'])
print(df2)

处理结果如下:
   

3.3 熵值、权重计算

然后定义一个通过熵值计算权重,及样本评分的函数。

def Weightfun(data):
    """
    :param data: 预处理好的数据
    :return: 输出权重。
    """
    K = 1/np.log(len(data))
    e = -K*np.sum(data*np.log(data))
    d = 1-e
    w = d/d.sum()
    return w

该函数的返回值有两个,w是权重,score是评分

调用函数,计算出各个指标的权重:

w = Weightfun(df2)
print(w)

各个指标权重如下图所示:
      

3.4 编制综合评价指标

直接将DataFrame格式的数据与求出的权重相乘,并求和,即得到通过熵值法编制出的综合指标,代码及结果如下图所示:

df3= df2 * w
df3['综合指标'] = df3.sum(axis=1)

     

本次分享就到这里,小啾感谢您的关注与支持!
🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ

P2部分示例文献截图,参考:
陈浩,刘媛华的论文《数字经济促进制造业高质量发展了吗?——基于省级面板数据和机器学习模型的实证分析》

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
青葱年少的头像青葱年少普通用户
上一篇 2023年5月29日
下一篇 2023年5月29日

相关推荐