目录
一、cube.AI实际项目应用
接篇二,前文都是采用FP-AI-SENSING1案例和配套的B-L475E-IOT01A开发板来阐述的,而实际项目中,我们都是基于自身项目硬件平台来训练模型及部署模型的,我们仅仅需要cube.AI软件包(作为可调用库)来支持我们项目,不会强行采用FP-AI-SENSING1案例去收集数据及配套的B-L475E-IOT01A等硬件平台部署。
回顾篇一,ST公司支持到如下图芯片型号,
在本文中,将采用STM32L496VGT6-ali开发板来部署cube.AI实现人工智能。STM32L496VGT6开发板已经集成了LSM6DSL传感器(三轴加速度计及三轴陀螺仪传感器),项目设想如下:
1)通过LSM6DSL采集加速度数值(x/y/z三轴加速度)
2)本文只采集三种姿态(开发板正面朝上,静止不动、左右移动、上下移动三种姿态)时的加速度数值,用来实现分类神经网络,三种姿态作为神经网络模型输出值(分类)
3)每次输入读取三组加速度值(每组数据是读取x/y/z三轴的三个加速度值),共9个数值作为神经网络模型输入数据
4)利用STM32L496VGT6开发板上的三个按钮,KEY0为静止不动姿态采集按键,KEY1为左右移动姿态采集按键,KEY2为上下移动姿态采集按键。
5)通过串口打印输出采集数据信息,并通过串联助手连接获得采集日志并保存成TXT文件
6)将记录数据文件转换为csv文件,通过keras框架,编写神经网络训练模型python项目,进行神经网络模型训练,并输出.h5训练模型文件
7)通过cubeMX和cube.AI将h5神经网络模型转换为c语言神经网络模型
8)将LSM6DSL实时采集数据推送给c语言神经网络模型API,进行神经网络计算,查看输出结果是否符合预期。
二、创建工程
在CubeIDE上,基于STM32L496VGT6芯片,创建新工程STM32工程,并实现了串口lpuart1调试日志输出,三个按键KEY0~2和三个LED灯LED0~2的功能实现,并实现LSM6DSL传感器采集数据功能(I2C4),请参考本专栏博文:
1)cubeIDE快速开发流程_ide 程序的开发过程_py_free的博客-CSDN博客
2)cubeIDE开发, stm32调试信息串口通信输出显示_py_free的博客-CSDN博客_怎么实查看stm32串口输出
现给出简要的配置及源码信息:
2.1 工程配置
1)内核功能配置及RCC开启外部时钟支持
2)开启LPUART1,并开启其中断支持
3)开启I2C4,并开启其中断功能及DMA功能
4)配置GPIO引脚(三个按键及三个LED灯)
5)配置时钟树
6)引脚视图
7)工程配置,选择为每个外设生成独立的.h/.c文件
生成输出代码
2.2 外设代码设计
禁用syscalls.c文件(右键进入文件属性设置页面)
在工程下,创建源目录ICore,在该目录下,如下图所示,创建子目录及外设驱动源文件
源码文件内容如下:
1)key.h
#ifndef KEY_H_
#define KEY_H_
#include "main.h"
#include "gpio.h"
GPIO_PinState get_key0_val();
GPIO_PinState get_key1_val();
GPIO_PinState get_key2_val();
uint8_t KEY_0(void);
uint8_t KEY_1(void);
uint8_t KEY_2(void);
#endif /* KEY_H_ */
key.c
#include "key.h"
GPIO_PinState get_key0_val()
{
return HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin);
};
GPIO_PinState get_key1_val()
{
return HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin);
};
GPIO_PinState get_key2_val()
{
return HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin);
};
uint8_t KEY_0(void)
{
uint8_t a;
a=0;//如果未进入按键处理,则返回0
if(HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)==GPIO_PIN_RESET){//读按键接口的电平
HAL_Delay(20);//延时去抖动
if(HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)==GPIO_PIN_RESET){ //读按键接口的电平
a=1;//进入按键处理,返回1
}
}
while(HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)==GPIO_PIN_RESET); //等待按键松开
return a;
}
uint8_t KEY_1(void)
{
uint8_t a;
a=0;//如果未进入按键处理,则返回0
if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==GPIO_PIN_RESET){//读按键接口的电平
HAL_Delay(20);//延时去抖动
if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==GPIO_PIN_RESET){ //读按键接口的电平
a=1;//进入按键处理,返回1
}
}
while(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==GPIO_PIN_RESET); //等待按键松开
return a;
}
uint8_t KEY_2(void)
{
uint8_t a;
a=0;//如果未进入按键处理,则返回0
if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==GPIO_PIN_RESET){//读按键接口的电平
HAL_Delay(20);//延时去抖动
if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==GPIO_PIN_RESET){ //读按键接口的电平
a=1;//进入按键处理,返回1
}
}
while(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==GPIO_PIN_RESET); //等待按键松开
return a;
}
2) led.h
#ifndef LED_H_
#define LED_H_
#include "main.h"
#include "gpio.h"
void Toggle_led0();
void Toggle_led1();
void Toggle_led2();
void set_led0_val(GPIO_PinState PinState);
void set_led1_val(GPIO_PinState PinState);
void set_led2_val(GPIO_PinState PinState);
#endif /* LED_H_ */
led.c
#include "led.h"
void Toggle_led0()
{
HAL_GPIO_TogglePin(LED0_GPIO_Port,LED0_Pin);
}
void Toggle_led1()
{
HAL_GPIO_TogglePin(LED1_GPIO_Port,LED1_Pin);
}
void Toggle_led2()
{
HAL_GPIO_TogglePin(LED2_GPIO_Port,LED2_Pin);
}
void set_led0_val(GPIO_PinState PinState)
{
HAL_GPIO_WritePin(LED0_GPIO_Port,LED0_Pin,PinState);
};
void set_led1_val(GPIO_PinState PinState)
{
HAL_GPIO_WritePin(LED1_GPIO_Port,LED1_Pin,PinState);
};
void set_led2_val(GPIO_PinState PinState)
{
HAL_GPIO_WritePin(LED2_GPIO_Port,LED2_Pin,PinState);
};
3)print.h
#ifndef INC_RETARGET_H_
#define INC_RETARGET_H_
#include "stm32l4xx_hal.h"
#include "stdio.h"//用于printf函数串口重映射
#include <sys/stat.h>
void ResetPrintInit(UART_HandleTypeDef *huart);
int _isatty(int fd);
int _write(int fd, char* ptr, int len);
int _close(int fd);
int _lseek(int fd, int ptr, int dir);
int _read(int fd, char* ptr, int len);
int _fstat(int fd, struct stat* st);
#endif /* INC_RETARGET_H_ */
print.c
#include <_ansi.h>
#include <_syslist.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/times.h>
#include <limits.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include "print.h"
#if !defined(OS_USE_SEMIHOSTING)
#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
UART_HandleTypeDef *gHuart;
void ResetPrintInit(UART_HandleTypeDef *huart) {
gHuart = huart;
/* Disable I/O buffering for STDOUT stream, so that
* chars are sent out as soon as they are printed. */
setvbuf(stdout, NULL, _IONBF, 0);
}
int _isatty(int fd) {
if (fd >= STDIN_FILENO && fd <= STDERR_FILENO)
return 1;
errno = EBADF;
return 0;
}
int _write(int fd, char* ptr, int len) {
HAL_StatusTypeDef hstatus;
if (fd == STDOUT_FILENO || fd == STDERR_FILENO) {
hstatus = HAL_UART_Transmit(gHuart, (uint8_t *) ptr, len, HAL_MAX_DELAY);
if (hstatus == HAL_OK)
return len;
else
return EIO;
}
errno = EBADF;
return -1;
}
int _close(int fd) {
if (fd >= STDIN_FILENO && fd <= STDERR_FILENO)
return 0;
errno = EBADF;
return -1;
}
int _lseek(int fd, int ptr, int dir) {
(void) fd;
(void) ptr;
(void) dir;
errno = EBADF;
return -1;
}
int _read(int fd, char* ptr, int len) {
HAL_StatusTypeDef hstatus;
if (fd == STDIN_FILENO) {
hstatus = HAL_UART_Receive(gHuart, (uint8_t *) ptr, 1, HAL_MAX_DELAY);
if (hstatus == HAL_OK)
return 1;
else
return EIO;
}
errno = EBADF;
return -1;
}
int _fstat(int fd, struct stat* st) {
if (fd >= STDIN_FILENO && fd <= STDERR_FILENO) {
st->st_mode = S_IFCHR;
return 0;
}
errno = EBADF;
return 0;
}
#endif //#if !defined(OS_USE_SEMIHOSTING)
4) usart.h
#ifndef INC_USART_H_
#define INC_USART_H_
#include "stm32l4xx_hal.h" //HAL库文件声明
#include <string.h>//用于字符串处理的库
#include "../print/print.h"//用于printf函数串口重映射
extern UART_HandleTypeDef hlpuart1;//声明LPUSART的HAL库结构体
#define HLPUSART_REC_LEN 256//定义LPUSART最大接收字节数
extern uint8_t HLPUSART_RX_BUF[HLPUSART_REC_LEN];//接收缓冲,最大HLPUSART_REC_LEN个字节.末字节为换行符
extern uint16_t HLPUSART_RX_STA;//接收状态标记
extern uint8_t HLPUSART_NewData;//当前串口中断接收的1个字节数据的缓存
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);//串口中断回调函数声明
#endif /* INC_USART_H_ */
usart.c
#include "usart.h"
uint8_t HLPUSART_RX_BUF[HLPUSART_REC_LEN];//接收缓冲,最大HLPUSART_REC_LEN个字节.末字节为换行符
/*
* bit15:接收到回车(0x0d)时设置HLPUSART_RX_STA|=0x8000;
* bit14:接收溢出标志,数据超出缓存长度时,设置HLPUSART_RX_STA|=0x4000;
* bit13:预留
* bit12:预留
* bit11~0:接收到的有效字节数目(0~4095)
*/
uint16_t HLPUSART_RX_STA=0;接收状态标记//bit15:接收完成标志,bit14:接收到回车(0x0d),bit13~0:接收到的有效字节数目
uint8_t HLPUSART_NewData;//当前串口中断接收的1个字节数据的缓存
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)//串口中断回调函数
{
if(huart ==&hlpuart1)//判断中断来源(串口1:USB转串口)
{
if(HLPUSART_NewData==0x0d){//回车标记
HLPUSART_RX_STA|=0x8000;//标记接到回车
}else{
if((HLPUSART_RX_STA&0X0FFF)<HLPUSART_REC_LEN){
HLPUSART_RX_BUF[HLPUSART_RX_STA&0X0FFF]=HLPUSART_NewData; //将收到的数据放入数组
HLPUSART_RX_STA++; //数据长度计数加1
}else{
HLPUSART_RX_STA|=0x4000;//数据超出缓存长度,标记溢出
}
}
HAL_UART_Receive_IT(&hlpuart1,(uint8_t *)&HLPUSART_NewData,1); //再开启接收中断
}
}
5) LSM6DSL.h
#ifndef _LSM6DSL_H_
#define _LSM6DSL_H_
#include "main.h"
void LSM6DSL_init();
//
uint8_t LSM6DSL_acc_st_open(void);
uint8_t LSM6DSL_acc_st_close(void);
uint8_t LSM6DSL_gyro_st_open(void);
uint8_t LSM6DSL_gyro_st_close(void);
uint8_t LSM6DSL_acc_read(int32_t *x_data,int32_t *y_data,int32_t *z_data);
uint8_t LSM6DSL_gyro_read(int32_t *x_data,int32_t *y_data,int32_t *z_data);
#endif /* LSM6DSL_LSM6DSL_H_ */
LSM6DSL.c,实现传感器的ID检验、软重置、模式设置、数据读取及转换功能。
#include <stdio.h>
#include "LSM6DSL.h"
extern I2C_HandleTypeDef hi2c4;
#define LSM6DSL_I2C_ADDR1 (0x6A)
#define LSM6DSL_I2C_ADDR2 (0x6B)
#define LSM6DSL_I2C_ADDR_TRANS(n) ((n) << 1)
#define LSM6DSL_I2C_ADDR LSM6DSL_I2C_ADDR_TRANS(LSM6DSL_I2C_ADDR2)
#define LSM6DSL_ACC_GYRO_FUNC_CFG_ACCESS 0x01
#define LSM6DSL_ACC_GYRO_SENSOR_SYNC_TIME 0x04
#define LSM6DSL_ACC_GYRO_SENSOR_RES_RATIO 0x05
#define LSM6DSL_ACC_GYRO_FIFO_CTRL1 0x06
#define LSM6DSL_ACC_GYRO_FIFO_CTRL2 0x07
#define LSM6DSL_ACC_GYRO_FIFO_CTRL3 0x08
#define LSM6DSL_ACC_GYRO_FIFO_CTRL4 0x09
#define LSM6DSL_ACC_GYRO_FIFO_CTRL5 0x0A
#define LSM6DSL_ACC_GYRO_DRDY_PULSE_CFG_G 0x0B
#define LSM6DSL_ACC_GYRO_INT1_CTRL 0x0D
#define LSM6DSL_ACC_GYRO_INT2_CTRL 0x0E
#define LSM6DSL_ACC_GYRO_WHO_AM_I_REG 0x0F
#define LSM6DSL_ACC_GYRO_CTRL1_XL 0x10
#define LSM6DSL_ACC_GYRO_CTRL2_G 0x11
#define LSM6DSL_ACC_GYRO_CTRL3_C 0x12
#define LSM6DSL_ACC_GYRO_CTRL4_C 0x13
#define LSM6DSL_ACC_GYRO_CTRL5_C 0x14
#define LSM6DSL_ACC_GYRO_CTRL6_C 0x15
#define LSM6DSL_ACC_GYRO_CTRL7_G 0x16
#define LSM6DSL_ACC_GYRO_CTRL8_XL 0x17
#define LSM6DSL_ACC_GYRO_CTRL9_XL 0x18
#define LSM6DSL_ACC_GYRO_CTRL10_C 0x19
#define LSM6DSL_ACC_GYRO_MASTER_CONFIG 0x1A
#define LSM6DSL_ACC_GYRO_WAKE_UP_SRC 0x1B
#define LSM6DSL_ACC_GYRO_TAP_SRC 0x1C
#define LSM6DSL_ACC_GYRO_D6D_SRC 0x1D
#define LSM6DSL_ACC_GYRO_STATUS_REG 0x1E
#define LSM6DSL_ACC_GYRO_OUT_TEMP_L 0x20
#define LSM6DSL_ACC_GYRO_OUT_TEMP_H 0x21
#define LSM6DSL_ACC_GYRO_OUTX_L_G 0x22
#define LSM6DSL_ACC_GYRO_OUTX_H_G 0x23
#define LSM6DSL_ACC_GYRO_OUTY_L_G 0x24
#define LSM6DSL_ACC_GYRO_OUTY_H_G 0x25
#define LSM6DSL_ACC_GYRO_OUTZ_L_G 0x26
#define LSM6DSL_ACC_GYRO_OUTZ_H_G 0x27
#define LSM6DSL_ACC_GYRO_OUTX_L_XL 0x28
#define LSM6DSL_ACC_GYRO_OUTX_H_XL 0x29
#define LSM6DSL_ACC_GYRO_OUTY_L_XL 0x2A
#define LSM6DSL_ACC_GYRO_OUTY_H_XL 0x2B
#define LSM6DSL_ACC_GYRO_OUTZ_L_XL 0x2C
#define LSM6DSL_ACC_GYRO_OUTZ_H_XL 0x2D
#define LSM6DSL_ACC_GYRO_SENSORHUB1_REG 0x2E
#define LSM6DSL_ACC_GYRO_SENSORHUB2_REG 0x2F
#define LSM6DSL_ACC_GYRO_SENSORHUB3_REG 0x30
#define LSM6DSL_ACC_GYRO_SENSORHUB4_REG 0x31
#define LSM6DSL_ACC_GYRO_SENSORHUB5_REG 0x32
#define LSM6DSL_ACC_GYRO_SENSORHUB6_REG 0x33
#define LSM6DSL_ACC_GYRO_SENSORHUB7_REG 0x34
#define LSM6DSL_ACC_GYRO_SENSORHUB8_REG 0x35
#define LSM6DSL_ACC_GYRO_SENSORHUB9_REG 0x36
#define LSM6DSL_ACC_GYRO_SENSORHUB10_REG 0x37
#define LSM6DSL_ACC_GYRO_SENSORHUB11_REG 0x38
#define LSM6DSL_ACC_GYRO_SENSORHUB12_REG 0x39
#define LSM6DSL_ACC_GYRO_FIFO_STATUS1 0x3A
#define LSM6DSL_ACC_GYRO_FIFO_STATUS2 0x3B
#define LSM6DSL_ACC_GYRO_FIFO_STATUS3 0x3C
#define LSM6DSL_ACC_GYRO_FIFO_STATUS4 0x3D
#define LSM6DSL_ACC_GYRO_FIFO_DATA_OUT_L 0x3E
#define LSM6DSL_ACC_GYRO_FIFO_DATA_OUT_H 0x3F
#define LSM6DSL_ACC_GYRO_TIMESTAMP0_REG 0x40
#define LSM6DSL_ACC_GYRO_TIMESTAMP1_REG 0x41
#define LSM6DSL_ACC_GYRO_TIMESTAMP2_REG 0x42
#define LSM6DSL_ACC_GYRO_TIMESTAMP_L 0x49
#define LSM6DSL_ACC_GYRO_TIMESTAMP_H 0x4A
#define LSM6DSL_ACC_GYRO_STEP_COUNTER_L 0x4B
#define LSM6DSL_ACC_GYRO_STEP_COUNTER_H 0x4C
#define LSM6DSL_ACC_GYRO_SENSORHUB13_REG 0x4D
#define LSM6DSL_ACC_GYRO_SENSORHUB14_REG 0x4E
#define LSM6DSL_ACC_GYRO_SENSORHUB15_REG 0x4F
#define LSM6DSL_ACC_GYRO_SENSORHUB16_REG 0x50
#define LSM6DSL_ACC_GYRO_SENSORHUB17_REG 0x51
#define LSM6DSL_ACC_GYRO_SENSORHUB18_REG 0x52
#define LSM6DSL_ACC_GYRO_FUNC_SRC 0x53
#define LSM6DSL_ACC_GYRO_TAP_CFG1 0x58
#define LSM6DSL_ACC_GYRO_TAP_THS_6D 0x59
#define LSM6DSL_ACC_GYRO_INT_DUR2 0x5A
#define LSM6DSL_ACC_GYRO_WAKE_UP_THS 0x5B
#define LSM6DSL_ACC_GYRO_WAKE_UP_DUR 0x5C
#define LSM6DSL_ACC_GYRO_FREE_FALL 0x5D
#define LSM6DSL_ACC_GYRO_MD1_CFG 0x5E
#define LSM6DSL_ACC_GYRO_MD2_CFG 0x5F
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_X_L 0x66
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_X_H 0x67
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Y_L 0x68
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Y_H 0x69
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Z_L 0x6A
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Z_H 0x6B
#define LSM6DSL_ACC_GYRO_X_OFS_USR 0x73
#define LSM6DSL_ACC_GYRO_Y_OFS_USR 0x74
#define LSM6DSL_ACC_GYRO_Z_OFS_USR 0x75
#define LSM6DSL_CHIP_ID_VALUE (0x6A)
#define LSM6DSL_RESET_VALUE (0x1)
#define LSM6DSL_RESET_MSK (0X1)
#define LSM6DSL_RESET_POS (0)
#define LSM6DSL_ACC_ODR_POWER_DOWN (0X00)
#define LSM6DSL_ACC_ODR_1_6_HZ (0X0B)
#define LSM6DSL_ACC_ODR_12_5_HZ (0x01)
#define LSM6DSL_ACC_ODR_26_HZ (0x02)
#define LSM6DSL_ACC_ODR_52_HZ (0x03)
#define LSM6DSL_ACC_ODR_104_HZ (0x04)
#define LSM6DSL_ACC_ODR_208_HZ (0x05)
#define LSM6DSL_ACC_ODR_416_HZ (0x06)
#define LSM6DSL_ACC_ODR_833_HZ (0x07)
#define LSM6DSL_ACC_ODR_1_66_KHZ (0x08)
#define LSM6DSL_ACC_ODR_3_33_KHZ (0x09)
#define LSM6DSL_ACC_ODR_6_66_KHZ (0x0A)
#define LSM6DSL_ACC_ODR_MSK (0XF0)
#define LSM6DSL_ACC_ODR_POS (4)
#define LSM6DSL_GYRO_ODR_POWER_DOWN (0X00)
#define LSM6DSL_GYRO_ODR_12_5_HZ (0x01)
#define LSM6DSL_GYRO_ODR_26_HZ (0x02)
#define LSM6DSL_GYRO_ODR_52_HZ (0x03)
#define LSM6DSL_GYRO_ODR_104_HZ (0x04)
#define LSM6DSL_GYRO_ODR_208_HZ (0x05)
#define LSM6DSL_GYRO_ODR_416_HZ (0x06)
#define LSM6DSL_GYRO_ODR_833_HZ (0x07)
#define LSM6DSL_GYRO_ODR_1_66_KHZ (0x08)
#define LSM6DSL_GYRO_ODR_3_33_KHZ (0x09)
#define LSM6DSL_GYRO_ODR_6_66_KHZ (0x0A)
#define LSM6DSL_GYRO_ODR_MSK (0XF0)
#define LSM6DSL_GYRO_ODR_POS (4)
#define LSM6DSL_ACC_RANGE_2G (0x0)
#define LSM6DSL_ACC_RANGE_4G (0x2)
#define LSM6DSL_ACC_RANGE_8G (0x3)
#define LSM6DSL_ACC_RANGE_16G (0x1)
#define LSM6DSL_ACC_RANGE_MSK (0X0C)
#define LSM6DSL_ACC_RANGE_POS (2)
#define LSM6DSL_ACC_SENSITIVITY_2G (61)
#define LSM6DSL_ACC_SENSITIVITY_4G (122)
#define LSM6DSL_ACC_SENSITIVITY_8G (244)
#define LSM6DSL_ACC_SENSITIVITY_16G (488)
#define LSM6DSL_GYRO_RANGE_245 (0x0)
#define LSM6DSL_GYRO_RANGE_500 (0x1)
#define LSM6DSL_GYRO_RANGE_1000 (0x2)
#define LSM6DSL_GYRO_RANGE_2000 (0x3)
#define LSM6DSL_GYRO_RANGE_MSK (0X0C)
#define LSM6DSL_GYRO_RANGE_POS (2)
#define LSM6DSL_GYRO_SENSITIVITY_245DPS (8750)
#define LSM6DSL_GYRO_SENSITIVITY_500DPS (17500)
#define LSM6DSL_GYRO_SENSITIVITY_1000DPS (35000)
#define LSM6DSL_GYRO_SENSITIVITY_2000DPS (70000)
#define LSM6DSL_SHIFT_EIGHT_BITS (8)
#define LSM6DSL_16_BIT_SHIFT (0xFF)
#define LSM6DSL_ACC_MUL (1000)
#define LSM6DSL_GYRO_MUL (1)
#define LSM6DSL_ACC_DEFAULT_ODR_100HZ (100)
#define LSM6DSL_GYRO_DEFAULT_ODR_100HZ (100)
#define LSM6DSL_GET_BITSLICE(regvar, bitname) \
((regvar & bitname##_MSK) >> bitname##_POS)
#define LSM6DSL_SET_BITSLICE(regvar, bitname, val) \
((regvar & ~bitname##_MSK) | ((val << bitname##_POS) & bitname##_MSK))
typedef enum {
ACC_RANGE_2G,
ACC_RANGE_4G,
ACC_RANGE_8G,
ACC_RANGE_16G,
ACC_RANGE_6G,
ACC_RANGE_12G,
ACC_RANGE_24G,
ACC_RANGE_100G,
ACC_RANGE_200G,
ACC_RANGE_400G,
ACC_RANGE_MAX
} acc_range_e;
typedef enum {
GYRO_RANGE_125DPS,
GYRO_RANGE_250DPS,
GYRO_RANGE_500DPS,
GYRO_RANGE_1000DPS,
GYRO_RANGE_2000DPS,
GYRO_RANGE_MAX
} gyro_range_e;
static int32_t lsm6dsl_acc_factor[ACC_RANGE_MAX] = {
LSM6DSL_ACC_SENSITIVITY_2G, LSM6DSL_ACC_SENSITIVITY_4G,
LSM6DSL_ACC_SENSITIVITY_8G, LSM6DSL_ACC_SENSITIVITY_16G
};
static int32_t lsm6dsl_gyro_factor[GYRO_RANGE_MAX] = {
0, LSM6DSL_GYRO_SENSITIVITY_245DPS, LSM6DSL_GYRO_SENSITIVITY_500DPS,
LSM6DSL_GYRO_SENSITIVITY_1000DPS, LSM6DSL_GYRO_SENSITIVITY_2000DPS
};
typedef enum {
DEV_POWER_OFF = 0,
DEV_POWER_ON,
DEV_SLEEP,
DEV_SUSPEND,
DEV_DEEP_SUSPEND,
} LSM6DSL_power_mode;
static int32_t cur_acc_factor = 0;
static int32_t cur_gyro_factor = 0;
uint8_t LSM6DSL_ID_check()
{
HAL_StatusTypeDef hi2c2_status = 0x00;
uint8_t addr_val[3] = {LSM6DSL_ACC_GYRO_WHO_AM_I_REG,0x00,LSM6DSL_CHIP_ID_VALUE};
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL ID error\r\n");
return 1;
}
if(addr_val[1]!=addr_val[2]){
printf("LSM6DSL validate_id is error\r\n");
return 1;
}
printf("LSM6DSL_id:%02X\r\n",addr_val[1]);
return 0;
}
uint8_t LSM6DSL_soft_reset()
{
HAL_StatusTypeDef hi2c2_status = 0x00;
/*first read*/
uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL3_C,0x00};
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL ACC_GYRO_CTRL3_C error\r\n");
return 1;
}
printf("LSM6DSL ACC_GYRO_CTRL3_C old:%02X\r\n",addr_val[1]);
addr_val[1] |= LSM6DSL_RESET_VALUE;
printf("LSM6DSL ACC_GYRO_CTRL3_C new:%02X\r\n",addr_val[1]);
hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("set LSM6DSL ACC_GYRO_CTRL3_C error\r\n");
return 1;
}
printf("successfully LSM6DSL soft reset\r\n");
return 0;
}
/*
* 以正数为例,最大可到32767,如果是Accelerometer数据,量程为2g的情况下,
* 32768个刻度,一个刻度代表:2g/32768 = 2000mg/32767 = 0.061035mg
* 例如:如果读出数据为16384,则加速度:16384x0.061035mg = 1000mg = 1g
*/
uint8_t LSM6DSL_acc_set_range(uint32_t range)
{
HAL_StatusTypeDef hi2c2_status = 0x00;
/*first read*/
uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL1_XL,0x00};
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL acc range error\r\n");
return 1;
}
uint8_t tmp = 0;
switch (range) {
case ACC_RANGE_2G: {
tmp = LSM6DSL_ACC_RANGE_2G;
} break;
case ACC_RANGE_4G: {
tmp = LSM6DSL_ACC_RANGE_4G;
} break;
case ACC_RANGE_8G: {
tmp = LSM6DSL_ACC_RANGE_8G;
} break;
case ACC_RANGE_16G: {
tmp = LSM6DSL_ACC_RANGE_16G;
} break;
default:
break;
}
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_RANGE, tmp);
hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("set LSM6DSL acc range error\r\n");
return 1;
}
if (range <= ACC_RANGE_16G) {
cur_acc_factor = lsm6dsl_acc_factor[range];
}
printf("successfully LSM6DSL set acc range\r\n");
return 0;
}
static uint8_t acc_st_lsm6dsl_hz2odr(uint32_t hz)
{
if (hz > 3330)
return LSM6DSL_ACC_ODR_6_66_KHZ;
else if (hz > 1660)
return LSM6DSL_ACC_ODR_3_33_KHZ;
else if (hz > 833)
return LSM6DSL_ACC_ODR_1_66_KHZ;
else if (hz > 416)
return LSM6DSL_ACC_ODR_833_HZ;
else if (hz > 208)
return LSM6DSL_ACC_ODR_416_HZ;
else if (hz > 104)
return LSM6DSL_ACC_ODR_208_HZ;
else if (hz > 52)
return LSM6DSL_ACC_ODR_104_HZ;
else if (hz > 26)
return LSM6DSL_ACC_ODR_52_HZ;
else if (hz > 13)
return LSM6DSL_ACC_ODR_26_HZ;
else if (hz >= 2)
return LSM6DSL_ACC_ODR_12_5_HZ;
else
return LSM6DSL_ACC_ODR_1_6_HZ;
}
uint8_t LSM6DSL_acc_set_odr(uint32_t hz)
{
HAL_StatusTypeDef hi2c2_status = 0x00;
/*first read*/
uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL1_XL,0x00};
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL acc odr error\r\n");
return 1;
}
uint8_t odr = acc_st_lsm6dsl_hz2odr(hz);
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR, odr);
hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("set LSM6DSL acc odr error\r\n");
return 1;
}
printf("successfully LSM6DSL set acc odr\r\n");
return 0;
}
uint8_t LSM6DSL_acc_power_mode(LSM6DSL_power_mode mode)
{
HAL_StatusTypeDef hi2c2_status = 0x00;
/*first read*/
uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL1_XL,0x00};
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL acc power_mode error\r\n");
return 1;
}
switch (mode) {
case DEV_POWER_ON: {
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR,LSM6DSL_ACC_ODR_12_5_HZ);
}
break;
case DEV_POWER_OFF: {
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR,LSM6DSL_ACC_ODR_POWER_DOWN);
}
break;
case DEV_SLEEP: {
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR,LSM6DSL_ACC_ODR_12_5_HZ);
}
break;
default:
break;
}
hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("set LSM6DSL acc power_mode error\r\n");
return 1;
}
printf("successfully LSM6DSL acc power_mode\r\n");
return 0;
}
uint8_t LSM6DSL_acc_st_open(void)
{
uint8_t ret = 0;
ret = LSM6DSL_acc_power_mode( DEV_POWER_ON);
if (ret>0) {
return ret;
}
ret = LSM6DSL_acc_set_range(ACC_RANGE_8G);
if (ret>0) {
return ret;
}
ret = LSM6DSL_acc_set_odr(LSM6DSL_ACC_DEFAULT_ODR_100HZ);
if (ret>0) {
return ret;
}
printf("successfully LSM6DSL acc open\r\n");
return 0;
}
uint8_t LSM6DSL_acc_st_close(void)
{
uint8_t ret = 0;
ret = LSM6DSL_acc_power_mode(DEV_POWER_OFF);
if (ret>0) {
return ret;
}
printf("successfully LSM6DSL acc close\r\n");
return 0;
}
//LSM6DSL的满刻度加速度范围为±2/±4/±8/±16 g,角速度范围为±125/±250/±500/±1000/±2000 dps。
uint8_t LSM6DSL_gyro_set_range(uint32_t range)
{
HAL_StatusTypeDef hi2c2_status = 0x00;
/*first read*/
uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL2_G,0x00};
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL gyro range error\r\n");
return 1;
}
uint8_t tmp = 0;
switch (range) {
case GYRO_RANGE_250DPS: {
tmp = LSM6DSL_GYRO_RANGE_245;
} break;
case GYRO_RANGE_500DPS: {
tmp = LSM6DSL_GYRO_RANGE_500;
} break;
case GYRO_RANGE_1000DPS: {
tmp = LSM6DSL_GYRO_RANGE_1000;
} break;
case GYRO_RANGE_2000DPS: {
tmp = LSM6DSL_GYRO_RANGE_2000;
} break;
default:
break;
}
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_RANGE, tmp);
hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("set LSM6DSL gyro range error\r\n");
return 1;
}
if ((range >= GYRO_RANGE_250DPS) && (range <= GYRO_RANGE_2000DPS)) {
cur_gyro_factor = lsm6dsl_gyro_factor[range];
}
printf("successfully LSM6DSL set gyro range\r\n");
return 0;
}
static uint8_t gyro_st_lsm6dsl_hz2odr(uint32_t hz)
{
if (hz > 3330)
return LSM6DSL_GYRO_ODR_6_66_KHZ;
else if (hz > 1660)
return LSM6DSL_GYRO_ODR_3_33_KHZ;
else if (hz > 833)
return LSM6DSL_GYRO_ODR_1_66_KHZ;
else if (hz > 416)
return LSM6DSL_GYRO_ODR_833_HZ;
else if (hz > 208)
return LSM6DSL_GYRO_ODR_416_HZ;
else if (hz > 104)
return LSM6DSL_GYRO_ODR_208_HZ;
else if (hz > 52)
return LSM6DSL_GYRO_ODR_104_HZ;
else if (hz > 26)
return LSM6DSL_GYRO_ODR_52_HZ;
else if (hz > 13)
return LSM6DSL_GYRO_ODR_26_HZ;
else
return LSM6DSL_GYRO_ODR_12_5_HZ;
}
uint8_t LSM6DSL_gyro_set_odr(uint32_t hz)
{
HAL_StatusTypeDef hi2c2_status = 0x00;
/*first read*/
uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL2_G,0x00};
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL gyro odr error\r\n");
return 1;
}
uint8_t odr = gyro_st_lsm6dsl_hz2odr(hz);
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR, odr);
hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("set LSM6DSL gyro odr error\r\n");
return 1;
}
printf("successfully LSM6DSL set gyro odr\r\n");
return 0;
}
uint8_t LSM6DSL_gyro_power_mode(LSM6DSL_power_mode mode)
{
HAL_StatusTypeDef hi2c2_status = 0x00;
/*first read*/
uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL2_G,0x00};
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL gyro power_mode error\r\n");
return 1;
}
switch (mode) {
case DEV_POWER_ON: {
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR,LSM6DSL_GYRO_ODR_12_5_HZ);
break;
}
case DEV_POWER_OFF: {
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR,LSM6DSL_GYRO_ODR_POWER_DOWN);
break;
}
case DEV_SLEEP: {
addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR,LSM6DSL_GYRO_ODR_12_5_HZ);
break;
}
default:
break;
}
hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
if(HAL_OK!=hi2c2_status){
printf("set LSM6DSL gyro power_mode error\r\n");
return 1;
}
printf("successfully LSM6DSL gyro power_mode\r\n");
return 0;
}
uint8_t LSM6DSL_gyro_st_open(void)
{
uint8_t ret = 0;
ret = LSM6DSL_gyro_power_mode(DEV_POWER_ON);
if (ret>0) {
return 1;
}
ret = LSM6DSL_gyro_set_range(GYRO_RANGE_1000DPS);
if (ret>0) {
return 1;
}
ret = LSM6DSL_gyro_set_odr(LSM6DSL_GYRO_DEFAULT_ODR_100HZ);
if (ret>0) {
return 1;
}
printf("successfully LSM6DSL gyro open\r\n");
return 0;
}
uint8_t LSM6DSL_gyro_st_close(void)
{
uint8_t ret = 0;
ret = LSM6DSL_gyro_power_mode(DEV_POWER_OFF);
if (ret>0) {
return 1;
}
printf("successfully LSM6DSL gyro close\r\n");
return 0;
}
void LSM6DSL_init()
{
if(LSM6DSL_ID_check()>0)
return;
if(LSM6DSL_soft_reset()>0)
return;
if(LSM6DSL_acc_power_mode(DEV_POWER_OFF)>0)
return;
if(LSM6DSL_gyro_power_mode(DEV_POWER_OFF)>0)
return;
printf("successfully LSM6DSL init\r\n");
}
#define DATA_AXIS_X 0
#define DATA_AXIS_Y 1
#define DATA_AXIS_Z 2
uint8_t LSM6DSL_acc_read(int32_t *x_data,int32_t *y_data,int32_t *z_data)
{
HAL_StatusTypeDef hi2c2_status = 0x00;
/*read 0X28,0X29,0X2A,0X2B,0X2C,0X2D*/
uint8_t addr[6] = {LSM6DSL_ACC_GYRO_OUTX_L_XL,LSM6DSL_ACC_GYRO_OUTX_H_XL,
LSM6DSL_ACC_GYRO_OUTY_L_XL,LSM6DSL_ACC_GYRO_OUTY_H_XL,
LSM6DSL_ACC_GYRO_OUTZ_L_XL,LSM6DSL_ACC_GYRO_OUTZ_H_XL};
uint8_t val[6] = {0};
for(uint8_t i=0; i<6; i++){
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr[i],1,&val[i],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL acc_read[0X%02X] error\r\n",addr[i]);
return 1;
}
}
// printf("read acc reg_data 1:%02X, 2:%02X, 3:%02X, 4:%02X, 5:%02X ,6:%02X\r\n"
// ,val[0],val[1],val[2],val[3],val[4],val[5]);
int32_t data[3] = {0};
data[DATA_AXIS_X] = (int16_t)((((int16_t)((int8_t)val[1])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[0]));
data[DATA_AXIS_Y] = (int16_t)((((int16_t)((int8_t)val[3])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[2]));
data[DATA_AXIS_Z] = (int16_t)((((int16_t)((int8_t)val[5])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[4]));
if (cur_acc_factor != 0)
{
data[DATA_AXIS_X] = (data[DATA_AXIS_X] * cur_acc_factor) / LSM6DSL_ACC_MUL;
data[DATA_AXIS_Y] = (data[DATA_AXIS_Y] * cur_acc_factor) / LSM6DSL_ACC_MUL;
data[DATA_AXIS_Z] = (data[DATA_AXIS_Z] * cur_acc_factor) / LSM6DSL_ACC_MUL;
}
// printf("read acc cur_acc_factor:%ld, X:%ld,Y:%ld,Z:%ld\r\n"
// ,cur_acc_factor,data[0],data[1],data[2]);
*x_data = data[DATA_AXIS_X];
*y_data = data[DATA_AXIS_Y];
*z_data = data[DATA_AXIS_Z];
return 0;
}
uint8_t LSM6DSL_gyro_read(int32_t *x_data,int32_t *y_data,int32_t *z_data)
{
HAL_StatusTypeDef hi2c2_status = 0x00;
/*read 0X22,0X23,0X24,0X25,0X26,0X27*/
uint8_t addr[6] = {LSM6DSL_ACC_GYRO_OUTX_L_G,LSM6DSL_ACC_GYRO_OUTX_H_G,
LSM6DSL_ACC_GYRO_OUTY_L_G,LSM6DSL_ACC_GYRO_OUTY_H_G,
LSM6DSL_ACC_GYRO_OUTZ_L_G,LSM6DSL_ACC_GYRO_OUTZ_H_G};
uint8_t val[6] = {0};
for(uint8_t i=0; i<6; i++){
hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr[i],1,&val[i],1,1000);
if(HAL_OK!=hi2c2_status){
printf("get LSM6DSL gyro_read[0X%02X] error\r\n",addr[i]);
return 1;
}
}
// printf("read gyro reg_data 1:%02X, 2:%02X, 3:%02X, 4:%02X, 5:%02X ,6:%02X\r\n"
// ,val[0],val[1],val[2],val[3],val[4],val[5]);
int32_t data[3] = {0};
data[DATA_AXIS_X] = (int16_t)((((int32_t)((int8_t)val[1])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[0]));
data[DATA_AXIS_Y] = (int16_t)((((int32_t)((int8_t)val[3])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[2]));
data[DATA_AXIS_Z] = (int16_t)((((int32_t)((int8_t)val[5])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[4]));
if (cur_gyro_factor != 0) {
data[DATA_AXIS_X] = (data[DATA_AXIS_X] * cur_gyro_factor) / LSM6DSL_GYRO_MUL;
data[DATA_AXIS_Y] = (data[DATA_AXIS_Y] * cur_gyro_factor) / LSM6DSL_GYRO_MUL;
data[DATA_AXIS_Z] = (data[DATA_AXIS_Z] * cur_gyro_factor) / LSM6DSL_GYRO_MUL;
}
// printf("read gyro cur_gyro_factor:%ld, X:%ld,Y:%ld,Z:%ld\r\n"
// ,cur_gyro_factor,data[0],data[1],data[2]);
*x_data = data[DATA_AXIS_X];
*y_data = data[DATA_AXIS_Y];
*z_data = data[DATA_AXIS_Z];
return 0;
}
2.3 传感器数据采集与输出源码设计
在main.c文件中,添加各个外设驱动头文件支持
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "../../ICore/key/key.h"
#include "../../ICore/led/led.h"
#include "../../ICore/print/print.h"
#include "../../ICore/usart/usart.h"
#include "../../ICore/LSM6DSL/LSM6DSL.h"
/* USER CODE END Includes */
打印实时采集的三轴加速度信息
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void out_print(int32_t acc_x, int32_t acc_y, int32_t acc_z)
{
if(acc_x>0)
printf("%d.%d, ",(acc_x*98)/10000,((acc_x*98)%10000)/100);
else
printf("%d.%d, ",(acc_x*98)/10000,((-acc_x*98)%10000)/100);
if(acc_y>0)
printf("%d.%d, ",(acc_y*98)/10000,((acc_y*98)%10000)/100);
else
printf("%d.%d, ",(acc_y*98)/10000,((-acc_y*98)%10000)/100);
if(acc_z>0)
printf("%d.%d, ",(acc_z*98)/10000,((acc_z*98)%10000)/100);
else
printf("%d.%d, ",(acc_z*98)/10000,((-acc_z*98)%10000)/100);
}
/* USER CODE END 0 */
在main函数中,初始化各个外设
int main(void)
{
/* USER CODE BEGIN 1 */
int32_t acc_x,acc_y,acc_z;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_I2C4_Init();
MX_LPUART1_UART_Init();
/* USER CODE BEGIN 2 */
ResetPrintInit(&hlpuart1);
HAL_UART_Receive_IT(&hlpuart1,(uint8_t *)&HLPUSART_NewData, 1); //再开启接收中断
HLPUSART_RX_STA = 0;
//LSM6DSL
LSM6DSL_init();
LSM6DSL_acc_st_open();
acc_x = acc_y = acc_z = 0;
uint8_t menu = 0;
uint8_t step_size = 3;
/* USER CODE END 2 */
在main函数循环体内,实现根据按键采集传感器数据(开发板正面朝上):
1)保持开发板在桌面不动,按键KEY0按下时,采集静止不动姿态时的三轴加速度,并每采集三次,输出一次姿态结果[1,0,0],再次按下KEY0时停止采集
2)保持开发板在桌面左右移动,按键KEY1按下时,采集左右移动姿态时的三轴加速度,并每采集三次,输出一次姿态结果[0,1,0],再次按下KEY1时停止采集
3)保持开发板在桌面上上下移动(垂直方向),按键KEY2按下时,采集左右移动姿态时的三轴加速度,并每采集三次,输出一次姿态结果[0,0,1],再次按下KEY2时停止采集
/* USER CODE BEGIN WHILE */
while (1)
{
if(HLPUSART_RX_STA&0xC000){//溢出或换行,重新开始
printf("%.*s\r\n",HLPUSART_RX_STA&0X0FFF, HLPUSART_RX_BUF);
HLPUSART_RX_STA=0;//接收错误,重新开始
HAL_Delay(100);//等待
}
if(KEY_0())
{
if(menu&0x01)
menu &= 0XFE; //取消静止不动数据刷新
else{
menu |= 0X01; //开启静止不动数据刷新
}
menu &= 0XF9; //取消其他数据刷新
}
if(KEY_1())
{
if(menu&0x02)
menu &= 0XFD; //取消左右移动数据刷新
else{
menu |= 0X02; //开启左右移动数据刷新
}
menu &= 0XFA; //取消其他数据刷新
}
if(KEY_2())
{
if(menu&0x04)
menu &= 0XFB; //取消上下移动数据刷新
else{
menu |= 0X04; //开启上下移动数据刷新
}
menu &= 0XFC; //取消其他数据刷新
}
if(menu&0x01)//静止不动
{
for(uint8_t i =0; i<step_size;i++){
LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
out_print(acc_x,acc_y,acc_z);
HAL_Delay(100);//等待
}
printf("1, 0, 0\r\n");
Toggle_led0();
}
if(menu&0x02)//左右移动
{
for(uint8_t i =0; i<step_size;i++){
LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
out_print(acc_x,acc_y,acc_z);
HAL_Delay(100);//等待
}
printf("0, 1, 0\r\n");
Toggle_led1();
}
if(menu&0x04)//上下移动
{
for(uint8_t i =0; i<step_size;i++){
LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
out_print(acc_x,acc_y,acc_z);
HAL_Delay(100);//等待
}
printf("0, 0, 1\r\n");
Toggle_led2();
}
/* USER CODE END WHILE */
2.4 编辑下载程序,采集数据
编译程序及加载到开发板
打开串口助手,连接开发板,先清空屏幕,然后按上述功能操作进行数据采集,每种姿态采集大概一分钟的数据,完成后保存数据。
创建目录My_HAR_Study,将保存的txt文件拷贝到该目录,并将该文件修改为.csv后缀
三、模型训练
在该目录下,创建myrun.py文件,内容如下:
#模型训练文件 myrun.py 训练 epochs 1000次
# myrun.py
'''
开发板(正面朝上)姿态检测
静止不动、左右移动、上下移动
输入层 -> 隐藏层 -> 输出层
'''
# 导入工具包
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import SGD
# %% 读取数据
data = pd.read_csv('SaveWindows2023_1_28_16-31-14.csv', sep=',', header=None)
data_x = data.loc[:, 0:8] # 取1~9列所有数据
data_y = data.loc[:, 9:11]
data_y.astype(int)
#
print("-x-")
print(data_x[0:2])
print("-y-")
print(data_y[0:2])
# %% 建立模型
model = Sequential()
# Dense(64) 是一个具有 64 个隐藏神经元的全连接层。
# 在第一层必须指定所期望的输入数据尺寸:
# 在这里,是一个 9 维的向量。
model.add(Dense(64, activation='relu', input_dim=9))
model.add(Dense(32, activation='relu'))
model.add(Dense(3, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(data_x, data_y,
epochs=1000,
batch_size=72)
score = model.evaluate(data_x, data_y, batch_size=72)
# 保存模型
model.save('myhar.h5')
当前目录启动命令行工具,运行python3 .\myrun.py命令,
四、cube.AI配置及c模型生成
回到数据采集工程(stm32L496VGT6_AI),双击.ioc打开cubeMX配置页面。
添加my_har模型,选择刚刚生成的keras模型文件(.h5),注意值生成模型,不需要应用程序。
分析结果显示,模型精度很差,意料之中,毕竟神经网络层只进行了简单设计,实现不了那么复杂姿态识别,但验证模型没有错误,支持转换,可以用来演示完开发流程就OK。
根据分析稍微调整一下heap和stack大小
生成输出代码如下图所示。
五、模型调用及测试
在项目属性设置页面,开启float支持
在main.c源文件中,添加AI模型库的头文件
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdlib.h>
#include "../../ICore/key/key.h"
#include "../../ICore/led/led.h"
#include "../../ICore/print/print.h"
#include "../../ICore/usart/usart.h"
#include "../../ICore/LSM6DSL/LSM6DSL.h"
#include "../../X-CUBE-AI/app/my_har.h"
#include "../../X-CUBE-AI/app/my_har_data.h"
/* USER CODE END Includes */
在main.c源文件中,添加AI模型库支持函数
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void out_print(int32_t acc_x, int32_t acc_y, int32_t acc_z)
{
if(acc_x>0)
printf("%d.%d, ",(acc_x*98)/10000,((acc_x*98)%10000)/100);
else
printf("%d.%d, ",(acc_x*98)/10000,((-acc_x*98)%10000)/100);
if(acc_y>0)
printf("%d.%d, ",(acc_y*98)/10000,((acc_y*98)%10000)/100);
else
printf("%d.%d, ",(acc_y*98)/10000,((-acc_y*98)%10000)/100);
if(acc_z>0)
printf("%d.%d, ",(acc_z*98)/10000,((acc_z*98)%10000)/100);
else
printf("%d.%d, ",(acc_z*98)/10000,((-acc_z*98)%10000)/100);
}
/* Global handle to reference the instantiated C-model */
static ai_handle network = AI_HANDLE_NULL;
/* Global c-array to handle the activations buffer */
AI_ALIGNED(32)
static ai_u8 activations[AI_MY_HAR_DATA_ACTIVATIONS_SIZE];
AI_ALIGNED(32)
static ai_float in_data[AI_MY_HAR_IN_1_SIZE];
AI_ALIGNED(32)
static ai_float out_data[AI_MY_HAR_OUT_1_SIZE];
/* Array of pointer to manage the model's input/output tensors */
static ai_buffer *ai_input;
static ai_buffer *ai_output;
static ai_buffer_format fmt_input;
static ai_buffer_format fmt_output;
#define NSIZE 3
void buf_print(void)
{
printf("in_data:");
for (int i=0; i<AI_MY_HAR_IN_1_SIZE; i++)
{
printf("%.2f ",((ai_float*)in_data)[i]);
}
printf("\n");
printf("out_data:");
for (int i=0; i<AI_MY_HAR_OUT_1_SIZE; i++)
{
printf("%.2f ",((ai_float*)out_data)[i]);
}
printf("\n");
}
void aiPrintBufInfo(const ai_buffer *buffer)
{
printf("(%lu, %lu, %lu, %lu)", AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_BATCH),
AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_HEIGHT),
AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_WIDTH),
AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_CHANNEL));
printf(" buffer_size:%d ", (int)AI_BUFFER_SIZE(buffer));
}
void aiPrintDataType(const ai_buffer_format fmt)
{
if (AI_BUFFER_FMT_GET_TYPE(fmt) == AI_BUFFER_FMT_TYPE_FLOAT)
printf("float%d ", (int)AI_BUFFER_FMT_GET_BITS(fmt));
else if (AI_BUFFER_FMT_GET_TYPE(fmt) == AI_BUFFER_FMT_TYPE_BOOL) {
printf("bool%d ", (int)AI_BUFFER_FMT_GET_BITS(fmt));
} else { /* integer type */
printf("%s%d ", AI_BUFFER_FMT_GET_SIGN(fmt)?"i":"u",
(int)AI_BUFFER_FMT_GET_BITS(fmt));
}
}
void aiPrintDataInfo(const ai_buffer *buffer,const ai_buffer_format fmt)
{
if (buffer->data)
printf(" @0x%X/%d \n",
(int)buffer->data,
(int)AI_BUFFER_BYTE_SIZE(AI_BUFFER_SIZE(buffer), fmt)
);
else
printf(" (User Domain)/%d \n",
(int)AI_BUFFER_BYTE_SIZE(AI_BUFFER_SIZE(buffer), fmt)
);
}
void aiPrintNetworkInfo(const ai_network_report report)
{
printf("Model name : %s\n", report.model_name);
printf(" model signature : %s\n", report.model_signature);
printf(" model datetime : %s\r\n", report.model_datetime);
printf(" compile datetime : %s\r\n", report.compile_datetime);
printf(" runtime version : %d.%d.%d\r\n",
report.runtime_version.major,
report.runtime_version.minor,
report.runtime_version.micro);
if (report.tool_revision[0])
printf(" Tool revision : %s\r\n", (report.tool_revision[0])?report.tool_revision:"");
printf(" tools version : %d.%d.%d\r\n",
report.tool_version.major,
report.tool_version.minor,
report.tool_version.micro);
printf(" complexity : %lu MACC\r\n", (unsigned long)report.n_macc);
printf(" c-nodes : %d\r\n", (int)report.n_nodes);
printf(" map_activations : %d\r\n", report.map_activations.size);
for (int idx=0; idx<report.map_activations.size;idx++) {
const ai_buffer *buffer = &report.map_activations.buffer[idx];
printf(" [%d] ", idx);
aiPrintBufInfo(buffer);
printf("\r\n");
}
printf(" map_weights : %d\r\n", report.map_weights.size);
for (int idx=0; idx<report.map_weights.size;idx++) {
const ai_buffer *buffer = &report.map_weights.buffer[idx];
printf(" [%d] ", idx);
aiPrintBufInfo(buffer);
printf("\r\n");
}
}
/*
* Bootstrap
*/
int aiInit(void) {
ai_error err;
/* Create and initialize the c-model */
const ai_handle acts[] = { activations };
err = ai_my_har_create_and_init(&network, acts, NULL);
if (err.type != AI_ERROR_NONE) {
printf("ai_error_type:%d,ai_error_code:%d\r\n",err.type,err.code);
};
ai_network_report report;
if (ai_my_har_get_report(network, &report) != true) {
printf("ai get report error\n");
return -1;
}
aiPrintNetworkInfo(report);
/* Reteive pointers to the model's input/output tensors */
ai_input = ai_my_har_inputs_get(network, NULL);
ai_output = ai_my_har_outputs_get(network, NULL);
//
fmt_input = AI_BUFFER_FORMAT(ai_input);
fmt_output = AI_BUFFER_FORMAT(ai_output);
printf(" n_inputs/n_outputs : %u/%u\r\n", report.n_inputs,
report.n_outputs);
printf("input :");
aiPrintBufInfo(ai_input);
aiPrintDataType(fmt_input);
aiPrintDataInfo(ai_input, fmt_input);
//
printf("output :");
aiPrintBufInfo(ai_output);
aiPrintDataType(fmt_output);
aiPrintDataInfo(ai_output, fmt_output);
return 0;
}
int acquire_and_process_data(void *in_data,uint8_t index, int32_t acc_x, int32_t acc_y, int32_t acc_z)
{
char buf_srt[64]={0};
if(acc_x>0){
sprintf(buf_srt,"%d.%d, ",(acc_x*98)/10000,((acc_x*98)%10000)/100);
((ai_float*)in_data)[NSIZE*index] =(float)atof(buf_srt);
}else{
sprintf(buf_srt,"%d.%d, ",(acc_x*98)/10000,((-acc_x*98)%10000)/100);
((ai_float*)in_data)[NSIZE*index] =(float)atof(buf_srt);
}
if(acc_y>0){
sprintf(buf_srt,"%d.%d, ",(acc_y*98)/10000,((acc_y*98)%10000)/100);
((ai_float*)in_data)[NSIZE*index+1] =(float)atof(buf_srt);
}else{
sprintf(buf_srt,"%d.%d, ",(acc_y*98)/10000,((-acc_y*98)%10000)/100);
((ai_float*)in_data)[NSIZE*index+1] =(float)atof(buf_srt);
}
if(acc_z>0){
sprintf(buf_srt,"%d.%d, ",(acc_z*98)/10000,((acc_z*98)%10000)/100);
((ai_float*)in_data)[NSIZE*index+2] =(float)atof(buf_srt);
}else{
sprintf(buf_srt,"%d.%d, ",(acc_z*98)/10000,((-acc_z*98)%10000)/100);
((ai_float*)in_data)[NSIZE*index+2] =(float)atof(buf_srt);
}
return 0;
}
/*
* Run inference
*/
int aiRun(const void *in_data, void *out_data) {
ai_i32 n_batch;
ai_error err;
/* 1 - Update IO handlers with the data payload */
ai_input[0].data = AI_HANDLE_PTR(in_data);
ai_output[0].data = AI_HANDLE_PTR(out_data);
/* 2 - Perform the inference */
n_batch = ai_my_har_run(network, &ai_input[0], &ai_output[0]);
if (n_batch != 1) {
err = ai_my_har_get_error(network);
printf("ai_error_type:%d,ai_error_code:%d\r\n",err.type,err.code);
};
return 0;
}
/* USER CODE END 0 */
在main函数中初始化ai模型
/* USER CODE BEGIN 2 */
ResetPrintInit(&hlpuart1);
HAL_UART_Receive_IT(&hlpuart1,(uint8_t *)&HLPUSART_NewData, 1); //再开启接收中断
HLPUSART_RX_STA = 0;
//LSM6DSL
LSM6DSL_init();
LSM6DSL_acc_st_open();
acc_x = acc_y = acc_z = 0;
uint8_t menu = 0;
uint8_t step_size = NSIZE;
//
aiInit();
buf_print();
/* USER CODE END 2 */
在main函数循环体中,通过串口lpuart1调试发送test,开启将实时数据推送给ai模型
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if(HLPUSART_RX_STA&0xC000){//溢出或换行,重新开始
printf("%.*s\r\n",HLPUSART_RX_STA&0X0FFF, HLPUSART_RX_BUF);
if(strstr((const char*)HLPUSART_RX_BUF,(const char*)"test"))
{
menu = 0x08;
}
HLPUSART_RX_STA=0;//接收错误,重新开始
HAL_Delay(100);//等待
}
if(KEY_0())
{
if(menu&0x01)
menu &= 0XFE; //取消静止不动数据刷新
else{
menu |= 0X01; //开启静止不动数据刷新
}
menu &= 0XF9; //取消其他数据刷新
}
if(KEY_1())
{
if(menu&0x02)
menu &= 0XFD; //取消左右移动数据刷新
else{
menu |= 0X02; //开启左右移动数据刷新
}
menu &= 0XFA; //取消其他数据刷新
}
if(KEY_2())
{
if(menu&0x04)
menu &= 0XFB; //取消上下移动数据刷新
else{
menu |= 0X04; //开启上下移动数据刷新
}
menu &= 0XFC; //取消其他数据刷新
}
if(menu&0x01)//静止不动
{
for(uint8_t i =0; i<step_size;i++){
LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
out_print(acc_x,acc_y,acc_z);
HAL_Delay(100);//等待
}
printf("1, 0, 0\r\n");
Toggle_led0();
}
if(menu&0x02)//左右移动
{
for(uint8_t i =0; i<step_size;i++){
LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
out_print(acc_x,acc_y,acc_z);
HAL_Delay(100);//等待
}
printf("0, 1, 0\r\n");
Toggle_led1();
}
if(menu&0x04)//上下移动
{
for(uint8_t i =0; i<step_size;i++){
LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
out_print(acc_x,acc_y,acc_z);
HAL_Delay(100);//等待
}
printf("0, 0, 1\r\n");
Toggle_led2();
}
if(menu&0x08)//测试
{
for(uint8_t i =0; i<step_size;i++){
LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
acquire_and_process_data(in_data,i,acc_x,acc_y,acc_z);
HAL_Delay(100);//等待
}
aiRun(in_data, out_data);
buf_print();
}
/* USER CODE END WHILE */
编译及下载程序
串口助手通过lpuart1连接开发板,发送“test”,开启AI计算,静止不动开发板情况如下:
左右移动开发板测试输出:
上下移动(垂直方向)开发板测试输出:
通过测试可以看出,基本能识别开发板的行为,若需要更准确的识别,更好数据采集方法,也可以更多姿态行为模式计算(开发板不同朝向、倾斜度等)
文章出处登录后可见!