python中pandas库的iloc函数用法
在 Pandas 中,.iloc
是一种用于基于整数位置进行索引的属性,可以用于获取 DataFrame 或 Series 中的数据。.iloc
支持多种索引方式,包括以下常用方式:
1. 单个整数位置索引
使用整数索引获取 DataFrame 或 Series 中的单个元素。
例如 df.iloc[0, 1]
表示获取 DataFrame 中第一行第二列的数据。
2. 整数位置范围索引
使用整数索引获取 DataFrame 或 Series 中的多个元素。
例如 df.iloc[0:3, 1:3]
表示获取 DataFrame 中第一行到第三行、第二列到第四列的数据。
3. 整数位置列表索引
使用整数列表索引获取 DataFrame 或 Series 中的多个元素。
例如 df.iloc[[0, 2, 4], [1, 3, 5]]
表示获取 DataFrame 中第一行、第三行、第五行和第二列、第四列、第六列的数据。
4. 布尔值索引
使用布尔值索引获取 DataFrame 或 Series 中的多个元素。
例如 df.iloc[df["col1"] > 0, [1, 3, 5]]
表示获取 DataFrame 中 col1
列大于 0 的行的第二列、第四列、第六列的数据。
注意:.iloc
属性基于整数(数字索引)位置进行索引,如果需要基于标签(标签列名)进行索引,应该使用 .loc
属性。
补充:python中iloc与loc的区别
loc和iloc都是pandas工具中定位某一行的函数,loc是location的意思,而iloc中的 i 指的是Integer,二者的区别如下:
- loc:通过行标签名称索引行数据
- iloc:通过行号索引行数据 示例数据
import numpy as np
import pandas as pd
data=DataFrame(np.arange(16).reshape(4,4),index=list("ABCD"),columns=list("wxyz"))
print(data)
输出如下:
w x y z
A 0 1 2 3
B 4 5 6 7
C 8 9 10 11
D 12 13 14 15
loc用法
print(data.loc["A"])
#w 0
#x 1
#y 2
#z 3
print(data.loc[["A"]])
# w x y z
#A 0 1 2 3
# []返回Series,[[]]返回DataFrame
iloc用法
print(data.loc["A"])
#w 0
#x 1
#y 2
#z 3
print(data.loc[["A"]])
# w x y z
#A 0 1 2 3
# []返回Series,[[]]返回DataFrame
到此这篇关于python中pandas库的iloc函数用法的文章就介绍到这了,更多相关python pandas库iloc函数用法内容请搜索aitechtogether.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持aitechtogether.com!