目录
50. Pow(x, n)
实现 pow(x,n),即计算 x 的 n 次幂函数(即x^n)。
示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000
示例 2:
输入:x = 2.10000, n = 3
输出:9.26100
示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2^(-2) = (1/2)^2 = 1/4 = 0.25
提示:
-100.0 < x < 100.0
-2^31 <= n <= 2^31-1
-10^4 <= x^n <= 10^4
代码1:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
double myPow(double x, int n)
{
if (n == 0)
return 1;
if (n % 2 == 1)
{
double temp = myPow(x, n / 2);
return temp * temp * x;
}
else if (n % 2 == -1)
{
double temp = myPow(x, n / 2);
return temp * temp / x;
}
else
{
double temp = myPow(x, n / 2);
return temp * temp;
}
}
};
int main()
{
Solution s;
cout << s.myPow(2.00000, 10) << endl;
cout << s.myPow(2.10000, 3) << endl;
cout << s.myPow(2.0000, -2) << endl;
return 0;
}
代码2:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
double helper(double x, int n)
{
if (n == 0)
return 1.0;
double y = helper(x, n / 2);
return n % 2 == 0 ? y * y : y * y * x;
}
double myPow(double x, int n)
{
long long N = static_cast<long long>(n);
if (N == 0)
return 1;
return N > 0 ? helper(x, N) : 1. / helper(x, -N);
}
};
int main()
{
Solution s;
cout << s.myPow(2.00000, 10) << endl;
cout << s.myPow(2.10000, 3) << endl;
cout << s.myPow(2.0000, -2) << endl;
return 0;
}
代码3:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
double myPow(double x, int n)
{
if (n == INT_MIN)
{
double t = dfs(x, -(n / 2));
return 1 / t * 1 / t;
}
else
{
return n < 0 ? 1 / dfs(x, -n) : dfs(x, n);
}
}
private:
double dfs(double x, int n)
{
if (n == 0)
{
return 1;
}
else if (n == 1)
{
return x;
}
else
{
double t = dfs(x, n / 2);
return (n % 2) ? (x * t * t) : (t * t);
}
}
};
int main()
{
Solution s;
cout << s.myPow(2.00000, 10) << endl;
cout << s.myPow(2.10000, 3) << endl;
cout << s.myPow(2.0000, -2) << endl;
return 0;
}
输出:
1024
9.261
0.25
60. 排列序列
给出集合 [1,2,3,...,n]
,其所有元素共有 n!
种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3
时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n
和 k
,返回第 k
个排列。
示例 1:
输入:n = 3, k = 3
输出:"213"
示例 2:
输入:n = 4, k = 9
输出:"2314"
示例 3:
输入:n = 3, k = 1
输出:"123"
提示:
1 <= n <= 9
1 <= k <= n!
代码1:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
string getPermutation(int n, int k)
{
string ans;
vector<bool> st(n + 1);
for (int i = 1; i <= n; i++)
{
int f = 1;
for (int j = n - i; j >= 1; j--)
f *= j;
for (int j = 1; j <= n; j++)
{
if (!st[j])
{
if (k <= f)
{
ans += to_string(j);
st[j] = 1;
break;
}
k -= f;
}
}
}
return ans;
}
};
int main()
{
Solution s;
cout << s.getPermutation(3, 3) << endl;
cout << s.getPermutation(4, 9) << endl;
cout << s.getPermutation(3, 1) << endl;
return 0;
}
代码2:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
vector<string> res;
string getPermutation(int n, int k)
{
string track;
traverse(track, n);
return res[k - 1];
}
void traverse(string &track, int n)
{
if (track.size() == n)
{
res.push_back(track);
return;
}
for (int i = 1; i <= n; i++)
{
char c = i + '0';
if (find(track.begin(), track.end(), c) != track.end())
continue;
track.push_back(c);
traverse(track, n);
track.pop_back();
}
}
};
int main()
{
Solution s;
cout << s.getPermutation(3, 3) << endl;
cout << s.getPermutation(4, 9) << endl;
cout << s.getPermutation(3, 1) << endl;
return 0;
}
代码3:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
int th;
string ans;
string getPermutation(int n, int k)
{
string s;
vector<bool> vec(9, false);
this->th = 0;
backtrack(n, k, s, vec);
return ans;
}
bool backtrack(int n, int k, string &s, vector<bool> &vec)
{
if (s.length() == n)
{
if (++th == k)
{
ans = s;
return true;
}
}
for (char c = '1'; c <= '1' + n - 1; c++)
{
if (vec[c - '1'])
continue;
s.push_back(c);
vec[c - '1'] = true;
if (backtrack(n, k, s, vec))
return true;
s.pop_back();
vec[c - '1'] = false;
}
return false;
}
};
int main()
{
Solution s;
cout << s.getPermutation(3, 3) << endl;
cout << s.getPermutation(4, 9) << endl;
cout << s.getPermutation(3, 1) << endl;
return 0;
}
输出:
213
2314
123
66. 加一
给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。
最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。
你可以假设除了整数 0 之外,这个整数不会以零开头。
示例 1:
输入:digits = [1,2,3]
输出:[1,2,4]
解释:输入数组表示数字 123。
示例 2:
输入:digits = [4,3,2,1]
输出:[4,3,2,2]
解释:输入数组表示数字 4321。
示例 3:
输入:digits = [0]
输出:[1]
提示:
1 <= digits.length <= 100
0 <= digits[i] <= 9
代码1:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
vector<int> plusOne(vector<int> &digits)
{
int len = digits.size() - 1;
for (int i = len; i >= 0; i--)
{
if ((digits[i] + 1 == 10 && i == len) || digits[i] >= 10)
{
digits[i] = 0;
if (i == 0)
{
digits.insert(digits.begin(), 1);
}
else
{
digits[i - 1] += 1;
}
}
else
{
if (i == len)
{
digits[i] += 1;
}
break;
}
}
return digits;
}
};
int main()
{
Solution s;
vector<int> sum;
vector<vector<int>> digits = {{1,2,3},{4,3,2,1},{0},{9,9,9}};
for (auto digit:digits){
sum = s.plusOne(digit);
copy(sum.begin(), sum.end(), ostream_iterator<int>(cout, " "));
cout << endl;
}
return 0;
}
代码2:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
vector<int> plusOne(vector<int> &digits)
{
int i = 0;
int size = digits.size();
for (i = size - 1; i >= 0; i--)
{
digits[i]++;
digits[i] = digits[i] % 10;
if (digits[i] != 0)
return digits;
}
if (i == -1)
{
digits.insert(digits.begin(), 1);
digits[size] = 0;
}
return digits;
}
};
int main()
{
Solution s;
vector<int> sum;
vector<vector<int>> digits = {{1,2,3},{4,3,2,1},{0},{9,9,9}};
for (auto digit:digits){
sum = s.plusOne(digit);
copy(sum.begin(), sum.end(), ostream_iterator<int>(cout, " "));
cout << endl;
}
return 0;
}
代码3:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
vector<int> plusOne(vector<int> &digits)
{
int len = digits.size() - 1;
for (; len > 0 && digits[len] == 9; --len)
{
digits[len] = 0;
}
if (len == 0 && digits[0] == 9)
{
digits[0] = 0;
digits.insert(digits.begin(), 1);
}
else
{
++digits[len];
}
return digits;
}
};
int main()
{
Solution s;
vector<int> sum;
vector<vector<int>> digits = {{1,2,3},{4,3,2,1},{0},{9,9,9}};
for (auto digit:digits){
sum = s.plusOne(digit);
copy(sum.begin(), sum.end(), ostream_iterator<int>(cout, " "));
cout << endl;
}
return 0;
}
输出:
1 2 4
4 3 2 2
1
1 0 0 0
67. 二进制求和
给你两个二进制字符串,返回它们的和(用二进制表示)。
输入为 非空 字符串且只包含数字 1
和 0
。
示例 1:
输入: a = "11", b = "1"
输出: "100"
示例 2:
输入: a = "1010", b = "1011"
输出: "10101"
提示:
- 每个字符串仅由字符
'0'
或'1'
组成。 1 <= a.length, b.length <= 10^4
- 字符串如果不是
"0"
,就都不含前导零。
代码1:
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
class Solution
{
public:
string addBinary(string a, string b) {
string result;
int carry = 0;
int i = a.length() - 1, j = b.length() - 1;
while (i >= 0 || j >= 0 || carry != 0) {
int sum = carry;
if (i >= 0) {
sum += a[i--] - '0';
}
if (j >= 0) {
sum += b[j--] - '0';
}
result.push_back(sum % 2 + '0');
carry = sum / 2;
}
reverse(result.begin(), result.end());
return result;
}
};
int main()
{
Solution s;
cout << s.addBinary("11", "1") << endl;
cout << s.addBinary("1010", "1011") << endl;
cout << s.addBinary("1111", "11111") << endl;
cout << s.addBinary("1100", "110111") << endl;
return 0;
}
代码2:
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
class Solution
{
public:
string addBinary(string a, string b)
{
int sum = 0;
string res;
int p = 0;
int i = a.length() - 1, j = b.length() - 1;
while (i >= 0 || j >= 0 || sum != 0)
{
if (i >= 0) {
sum += a[i--] - '0';
}
if (j >= 0) {
sum += b[j--] - '0';
}
p = sum % 2;
sum /= 2;
res += to_string(p);
}
reverse(res.begin(), res.end());
return res;
}
};
int main()
{
Solution s;
cout << s.addBinary("11", "1") << endl;
cout << s.addBinary("1010", "1011") << endl;
cout << s.addBinary("1111", "11111") << endl;
cout << s.addBinary("1100", "110111") << endl;
return 0;
}
代码3:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
string addBinary(string a, string b)
{
if (b.size() > a.size())
{
string temp = b;
b = a;
a = temp;
}
int i = a.size() - 1;
int j = b.size() - 1;
if (i != j)
{
for (int k = 0; k < i - j; k++)
b = "0" + b;
}
int count = 0;
for (int k = i; k >= 0; k--)
{
if (a[k] - '0' + b[k] - '0' + count == 0)
{
a[k] = '0';
count = 0;
}
else if (a[k] - '0' + b[k] - '0' + count == 1)
{
a[k] = '1';
count = 0;
}
else if (a[k] - '0' + b[k] - '0' + count == 3)
{
a[k] = '1';
count = 1;
}
else
{
a[k] = '0';
count = 1;
}
}
if (count == 1)
a = '1' + a;
return a;
}
};
int main()
{
Solution s;
cout << s.addBinary("11", "1") << endl;
cout << s.addBinary("1010", "1011") << endl;
cout << s.addBinary("1111", "11111") << endl;
cout << s.addBinary("1100", "110111") << endl;
return 0;
}
代码4:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
string addBinary(string a, string b)
{
string result = "", rr = "";
char aa, bb;
int l1 = a.length(), l2 = b.length(), i = l1 - 1, j = l2 - 1, carry = 0, sum = 0;
while (true)
{
if (i < 0)
aa = '0';
else
aa = a[i];
if (j < 0)
bb = '0';
else
bb = b[j];
sum = (aa - '0') + (bb - '0') + carry;
result += ((sum % 2) + '0');
carry = sum / 2;
j--;
i--;
if (i < 0 && j < 0)
{
if (carry == 1)
result += "1";
break;
}
}
int l3 = result.length();
for (int i = l3 - 1; i >= 0; i--)
rr += result[i];
return rr;
}
};
int main()
{
Solution s;
cout << s.addBinary("11", "1") << endl;
cout << s.addBinary("1010", "1011") << endl;
cout << s.addBinary("1111", "11111") << endl;
cout << s.addBinary("1100", "110111") << endl;
return 0;
}
输出:
100
10101
101110
1000011
69. x 的平方根
实现 int sqrt(int x)
函数。
计算并返回 x 的平方根,其中 x 是非负整数。
由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
示例 1:
输入: 4
输出: 2
示例 2:
输入: 8
输出: 2
说明: 8 的平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。
代码1:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
int mySqrt(int x)
{
long long i = 0;
long long j = x / 2 + 1;
while (i <= j)
{
long long mid = (i + j) / 2;
long long res = mid * mid;
if (res == x)
return mid;
else if (res < x)
i = mid + 1;
else
j = mid - 1;
}
return j;
}
};
int main()
{
Solution s;
cout << s.mySqrt(4) << endl;
cout << s.mySqrt(8) << endl;
cout << s.mySqrt(121) << endl;
cout << s.mySqrt(120) << endl;
cout << s.mySqrt(122) << endl;
return 0;
}
代码2:
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
int mySqrt(int x)
{
if (x == 0)
return 0;
double last = 0;
double res = 1;
while (res != last)
{
last = res;
res = (res + x / res) / 2;
}
return int(res);
}
};
int main()
{
Solution s;
cout << s.mySqrt(4) << endl;
cout << s.mySqrt(8) << endl;
cout << s.mySqrt(121) << endl;
cout << s.mySqrt(120) << endl;
cout << s.mySqrt(122) << endl;
return 0;
}
代码3:
#include <iostream>
#include <math.h>
using namespace std;
class Solution
{
public:
int mySqrt(int x) {
if (x <= 1) {
return x;
}
int left = 1;
int right = x;
while (left <= right) {
int mid = left + (right - left) / 2;
if (mid == x / mid) {
return mid;
} else if (mid < x / mid) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return right;
}
};
int main()
{
Solution s;
cout << s.mySqrt(4) << endl;
cout << s.mySqrt(8) << endl;
cout << s.mySqrt(121) << endl;
cout << s.mySqrt(120) << endl;
cout << s.mySqrt(122) << endl;
return 0;
}
输出:
2
2
11
10
11
另: cmath或者math.h库中有现成的函数 sqrt()
相关阅读: 力扣C++|一题多解之数学题专场(1)
文章出处登录后可见!
已经登录?立即刷新