【Stable Diffusion】Stable Diffusion各类模型描述

Stable Diffusion 是一种新型的生成模型,它可以用于生成高质量的图像、文本和音频等多种形式的数据。目前已经出现了许多基于 Stable Diffusion 模型的变种,下面简单介绍其中几种比较流行的模型:

模型链接:https://huggingface.co/stabilityai

DDIM (Deep Diffusion Image Model)

DDIM 是 Stable Diffusion 的第一个应用,它采用了局部证据传递(Local Evidence Accumulation)的方法来构建 Diffusion Process。在 DDIM 中,Diffusion Process 通过 N 次迭代来完成,每次迭代包括两个阶段:更新噪声和更新图像。在更新噪声的阶段中,噪声被推断成为观察到的图像与当前候选图像之间的噪声;在更新图像的阶段中,通过候选噪声来构建图像。

CDPM (Conditional Diffusion Process Model)

CDPM 是一种条件 Stable Diffusion 模型,它能够生成给定条件下的高质量图像。与 DDIM 不同,CDPM 采用了 PixelCNN++ 来构建条件估计器,从而将条件信息导入到 Diffusion Process 中。与传统的条件生成模型不同,CDPM 不需要将条件信息与初始噪声混合,而是在 Diffusion Process 中同时处理条件信息和噪声,从而更好地利用条件信息。

Diffusion Probabilistic Models (DPM)

DPM 是一种在多个时刻点上建模数据分布的 Stable Diffusion 模型。与其他 Stable Diffusion 模型不同,DPM 可以预测数据在未来时刻点的分布,这使得 DPM 在视频生成和自动驾驶等领域具有潜在的应用价值。DPM 中的 Diffusion Process 是由许多分数阶微分方程组成的,在每个时刻点上使用一个分数阶微分方程来描述数据的条件分布。

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
乘风的头像乘风管理团队
上一篇 2023年12月27日
下一篇 2023年12月27日

相关推荐

此站出售,如需请站内私信或者邮箱!