动态规划课堂5—–子序列问题(动态规划 + 哈希表)

目录


引言:

要想解决子序列问题那么就要理解子序列和子数组的区别,二者的定义如下。

子序列:是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

子数组:是数组中的一个连续部分[6,2,2,7] 是数组 [0,3,1,6,2,2,7] 的子数组。

本节和之前的分析思路一样还是考虑好1. 状态表示,2.状态转移方程,3.初始化,4.填表顺序,5.返回值。希望友友们看完本章后,自己理解一下子数组问题和子序列问题的差别。

例题1:最长递增子序列

链接:最长递增子序列

题目简介:

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

解法(动态规划):

 1. 状态表示:

这里和子数组的表示方法倒是差不多。

dp[i] 表示:以i 位置元素为结尾的所有⼦序列中,最长递增子序列的长度。

 2.状态转移方程:

推状态转移方程时可以画图帮助我们理解,下面这些情况可以大致分为两种,一种就只有一个i还有一种i会跟在i – 1,2,3的某一个后面(子序列)。

对于dp[i] ,我们可以根据子序列的构成⽅式,进⾏分类讨论:

(1)子序列长度为1 :只能自己玩了,此时dp[i] = 1 。

(2)子序列长度大于1 : nums[i] 可以跟在前面任何⼀个数后面形成子序列。 设前面的某⼀个数的下标为j ,其中0 。只要nums[j] < nums[i] , i 位置元素跟在j 元素后⾯就可以形成递增序列,长度为dp[j] + 1 。因此,我们仅需找到满足要求的最大的dp[j] + 1 即可。

综上, dp[i] = max(dp[j] + 1, dp[i]) ,其中0 <= j <= i – 1 && nums[j] < nums[i]。

 3.初始化:

在求长度之类的dp问题一般可以直接把dp表都初始化成1,因为在我们的状态表示中长度至少为1.因此可以将dp 表内所有元素初始化为1 。

 4.填表顺序:

从左往右

 5.返回值: 

由于不知道最长递增子序列以谁结尾,因此返回dp 表里面的最大值。

代码如下:

class Solution {
    public int lengthOfLIS(int[] nums) {
        //1.创建 dp 表
        //2.初始化
        //3.填表
        //4.返回值
        int n = nums.length;
        int[] dp = new int[n];
        for(int i = 0;i < n;i++){
            dp[i] = 1;
        }
        int max = dp[0];
        for(int i = 1;i < n;i++){
            for(int j = i - 1;j >= 0;j--){
                if(nums[i] > nums[j]){
                    dp[i] = Math.max(dp[i],dp[j] + 1);
                }
            }
            max = Math.max(max,dp[i]);
        }
        return max;
    }
}

时间复杂度:O(n^2)

空间复杂度:O(n)

接下来几题会用到动态规划 + 哈希表

例题2:最长定差子序列

链接:最长定差子序列

题目简介:

给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference 。

子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。

 解法(动态规划):

这道题和最长递增子序列有⼀些相似,但仔细读题就会发现,本题的arr.lenght⾼达10^5 ,使⽤O(N^2) 的lcs 模型⼀定会超时。那么,它有什么信息是不同于最长递增子序列呢?是定差。之前,我们只知道要递增,不知道前⼀个数应当是多少;现在我们可以计算出前⼀个数是多少了,就可以⽤数值来定义dp 数组的值,并形成状态转移。这样,就把已有信息有效地利用了起来。

 1. 状态表示:

dp[i] 表示:以i 位置的元素为结尾所有的子序列中,最长的等差子序列的长度。

 2.状态转移方程:

对于dp[i] ,上⼀个定差⼦序列的取值定为arr[i] – difference 。只要找到以上⼀个数字为结尾的定差⼦序列⻓度的dp[arr[i] – difference] ,然后加上1 ,就是以i为结尾的定差⼦序列的⻓度。

这里要考虑一个问题:如果在i前面有多个等于arr[i] – difference的dp值要取哪一个呢?

 其实取最后一个即可,因为最后一个肯定大于等于前面几个的长度。

因此,这⾥可以选择使⽤哈希表做优化。我们可以把【元素, dp[j]】绑定,放进哈希表(会覆盖)中。甚⾄不⽤创建dp 数组,直接在哈希表中做动态规划。

 3.初始化:

刚开始的时候,需要把第⼀个元素放进哈希表中, hash[arr[0]] = 1。

 4.填表顺序:

从左往右

 5.返回值:

返回整个dp 表中的最⼤值

代码如下:

这里之所以不用 hash[arr[0]] = 1,是因为在下面put的写法中已经包含了。

class Solution {
    public int longestSubsequence(int[] arr, int difference) {
        //在哈希表里面做动态规划
        Map<Integer,Integer> map = new HashMap<>();
        int ret = 1;
        for(int x:arr){
            map.put(x,map.getOrDefault(x - difference,0) + 1);
            ret = Math.max(ret,map.get(x));
        }
        return ret;
    }
}

 时间复杂度:O(n) 

 空间复杂度:O(n)

例题3:最长的斐波那契子序列的长度

链接:最长的斐波那契子序列的长度

题目简介:

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回  0 。

(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)

 解法(动态规划):

 1. 状态表示:

 2.状态转移方程:

设nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是a = c – b 。我们根据a 的情况讨论:

(1)a 存在,下标为k ,并且a < b :此时我们需要以k 位置以及i 位置元素为结尾的最⻓斐波那契⼦序列的⻓度,然后再加上j位置的元素即可。于是dp[i][j] = dp[k][i] + 1。

(2)a 存在,但是b < a < c :此时只能两个元素自己玩了, dp[i][j] = 2 。

(3)a 不存在:此时依旧只能两个元素自己玩了, dp[i][j] = 2 。

优化点:我们发现,在状态转移⽅程中,我们需要确定a 元素的下标。因此我们可以在dp 之前,将所有的元素+下标绑定在⼀起,放到哈希表中。

 3.初始化:

可以将表⾥⾯的值都初始化为2

 4.填表顺序:

先固定最后⼀个数,然后枚举倒数第二个数。由于j > i 故表如下:

 5.返回值:

因此返回dp 表中的最大值但是最大值可能小于3 ,小于3的话说明不存在。因此需要判断⼀下。

具体代码如下:

class Solution {
    public int lenLongestFibSubseq(int[] arr) {
        //1.创建 dp 表
        //2.初始化
        //3.填表
        //4.返回值
        Map<Integer,Integer> map = new HashMap<>();
        int n = arr.length;
        for(int i = 0;i < n;i++){
            map.put(arr[i],i);
        }
        int[][] dp = new int[n][n];
        for(int i = 0;i < n;i++){
            for(int j = 0;j < n;j++){
                dp[i][j] = 2;
            }
        }
        int ret = 2;
        for(int j = 2;j < n;j++){
            for(int i = 1;i < j;i++){
                int a = arr[j] - arr[i];
                if(a < arr[i] && map.containsKey(a)){
                    dp[i][j] = dp[map.get(a)][i] + 1;
                }
                ret = Math.max(ret,dp[i][j]);
            }
        }
        return ret < 3 ? 0 : ret;
    }
}

时间复杂度:O(n^2)

空间复杂度:O(n^2)

例题4:最长等差数列

链接:最长等差数列

题目简介:

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

 解法(动态规划):

 1. 状态表示:

和上一题一样,一维的dp表不能解决问题,dp[i][j] 表示:以i 位置以及j位置的元素为结尾的所有的子序列中,最长的等差序列的长度。规定⼀下i < j 。

 2.状态转移方程:

设nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是a = 2 * b – c 。我们根据a的情况讨论:这里和例题3的分析差不多就直接给图了。

优化点:我们发现,在状态转移⽅程中,我们需要确定a 元素的下标。因此我们可以将所有的元素+ 下标绑定在⼀起,放到哈希表中,这里有两种策略:

(1)在dp 之前,放⼊哈希表中。这是可以的,但是需要将下标形成⼀个数组放进哈希表中。这样 时间复杂度较高,我帮⼤家试过了,超时。

(2)⼀边dp ,⼀边保存。这种方式,我们仅需保存最近的元素的下标,不用保存下标数组。但是 ⽤这种⽅法的话,我们在遍历顺序那里,先固定倒数第⼆个数(i),再遍历倒数第⼀个数(j)。这样就可以在i 使用完时候,将nums[i] 扔到哈希表中。✅

 3.初始化:

将所有位置初始化为2。

 4.填表顺序:

因为这里要保证去相同a下标k的最大值。

下图为固定倒数第一个数(j),枚举倒数第二个数。这样就不能保证跟新dp表时用到的a为在i前面的。红色部分为a可能出现的地方。

所以我们采用先固定倒数第⼆个数,然后枚举倒数第⼀个数如下图,这样a就只能在i的前面。

 5.返回值:

返回dp 表中的最大值

代码如下:

class Solution {
    public int longestArithSeqLength(int[] nums) {
        //1.创建 dp 表
        //2.初始化
        //3.填表
        //4.返回值
        Map<Integer,Integer> map = new HashMap<>();
        int n = nums.length;
        map.put(nums[0],0);
        int[][] dp = new int[n][n];
        for(int i = 0;i < n;i++){
            Arrays.fill(dp[i],2);
        }
        int ret = 2;
        for(int i = 1;i < n;i++){
            for(int j = i + 1;j < n;j++){
                int a = 2 * nums[i] - nums[j];
                if(map.containsKey(a)){
                    dp[i][j] = dp[map.get(a)][i] + 1;
                    ret = Math.max(ret,dp[i][j]);
                }
            }
            map.put(nums[i],i);
        }
        return ret;

    }
}

时间复杂度:O(n^2)

空间复杂度:O(n^2)

例题5:等差数列划分II-子序列

链接:等差数列划分II-子序列

题目简介:

给你一个整数数组 nums ,返回 nums 中所有 等差子序列 的数目。

如果一个序列中 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该序列为等差序列。

  • 例如,[1, 3, 5, 7, 9][7, 7, 7, 7] 和 [3, -1, -5, -9] 都是等差序列。
  • 再例如,[1, 1, 2, 5, 7] 不是等差序列。

数组中的子序列是从数组中删除一些元素(也可能不删除)得到的一个序列。

  • 例如,[2,5,10] 是 [1,2,1,2,4,1,5,10] 的一个子序列。

题目数据保证答案是一个 32-bit 整数。

  解法(动态规划):

 1. 状态表示:

dp[i][j] 表⽰:以i 位置以及j 位置的元素为结尾的所有的⼦序列中,等差子序列的个数。规定⼀下i < j 。这一类问题基本都这样。

 2.状态转移方程:

设nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是a = 2 * b – c 。我们根据a的情况讨论:(还是这张图非常重要)

(1)a 存在,下标为k ,并且a < b :此时我们知道以k 元素以及i 元素结尾的等差序列的数dp[k][i] ,在这些⼦序列的后⾯加上j 位置的元素依旧是等差序列。但是这⾥会多出来⼀个以k, i, j 位置的元素组成的新的等差序列,因此dp[i][j] = dp[k][i] + 1。

(2)因为a 可能有很多个,我们需要全部累加起来。

综上, dp[i][j] += dp[k][i] + 1 。

优化点:我们发现,在状态转移⽅程中,我们需要确定a 元素的下标。因此我们可以在dp之前,将【所有元素+下标数组】绑定在⼀起,放到哈希表中。这⾥为何要保存下标数组,是因为我们要统计个数,所有的下标都需要统计,之前是覆盖。

 3.初始化:

初始化dp 表为0。

 4.填表顺序:

先固定倒数第⼀个数,然后枚举倒数第⼆个数(这里就不能先固定倒数第二个数,因为要的是各个情况的和而不是最大值)。

 5.返回值:

我们要统计所有的等差子序列,因此返回dp 表中所有元素的和。

代码如下:

这里特别说明一个,题目给出的数都是32位以内的但是相加减可能会越界(😭),有些例子越界后可能会正好形成等差数列从而报错(我替你们试过了😭😭😭),故要设置成long类型。

class Solution {
    public int numberOfArithmeticSlices(int[] nums) {
        //1.创建 dp 表
        //2.初始化
        //3.填表
        //4.返回值
        Map<Long,List<Integer>> map = new HashMap<>();
        int n = nums.length;
        int[][] dp = new int[n][n];
        for(int i = 0;i < n;i++){
            long cmp = (long)nums[i];
            if(!map.containsKey(cmp)){
                map.put(cmp,new ArrayList<Integer>());
            }
            map.get(cmp).add(i);
        }
        int sum = 0;
        for(int j = 2;j < n;j++){
            for(int i = 1;i < j;i++){
                long a = 2L * nums[i] - nums[j];
                if(map.containsKey(a)){
                    for(int k : map.get(a)){
                        if(k < i){
                            dp[i][j] += dp[k][i] + 1;
                        }
                    }
                }
                sum += dp[i][j];
            }
        }
        return sum;

    }
}

时间复杂度:O(n^2)

空间复杂度:O(n^2)

结语:

其实写博客不仅仅是为了教大家,同时这也有利于我巩固知识点,和做一个学习的总结,由于作者水平有限,对文章有任何问题还请指出,非常感谢。如果大家有所收获的话还请不要吝啬你们的点赞收藏和关注,这可以激励我写出更加优秀的文章。

版权声明:本文为博主作者:gobeyye原创文章,版权归属原作者,如果侵权,请联系我们删除!

原文链接:https://blog.csdn.net/2301_80035594/article/details/136588215

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2024年4月1日
下一篇 2024年4月1日

相关推荐