Meta Llama 3本地部署

感谢阅读

  • 环境安装
  • 收尾

环境安装

项目文件
下载完后在根目录进入命令终端(windows下cmd、linux下终端、conda的话activate)
运行

pip install -e .

不要控制台,因为还要下载模型。这里挂着是节省时间

模型申请链接

复制如图所示的链接
然后在刚才的控制台

bash download.sh

在验证哪里直接输入刚才链接即可
如果报错没有wget,则点我下载wget
然后放到C:\Windows\System32 下

torchrun --nproc_per_node 1 example_chat_completion.py \
    --ckpt_dir Meta-Llama-3-8B-Instruct/ \
    --tokenizer_path Meta-Llama-3-8B-Instruct/tokenizer.model \
    --max_seq_len 512 --max_batch_size 6

收尾

创建chat.py脚本

# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.

from typing import List, Optional

import fire

from llama import Dialog, Llama


def main(
    ckpt_dir: str,
    tokenizer_path: str,
    temperature: float = 0.6,
    top_p: float = 0.9,
    max_seq_len: int = 512,
    max_batch_size: int = 4,
    max_gen_len: Optional[int] = None,
):
    """
    Examples to run with the models finetuned for chat. Prompts correspond of chat
    turns between the user and assistant with the final one always being the user.

    An optional system prompt at the beginning to control how the model should respond
    is also supported.

    The context window of llama3 models is 8192 tokens, so `max_seq_len` needs to be <= 8192.

    `max_gen_len` is optional because finetuned models are able to stop generations naturally.
    """
    generator = Llama.build(
        ckpt_dir=ckpt_dir,
        tokenizer_path=tokenizer_path,
        max_seq_len=max_seq_len,
        max_batch_size=max_batch_size,
    )

    # Modify the dialogs list to only include user inputs
    dialogs: List[Dialog] = [
        [{"role": "user", "content": ""}],  # Initialize with an empty user input
    ]

    # Start the conversation loop
    while True:
        # Get user input
        user_input = input("You: ")
        
        # Exit loop if user inputs 'exit'
        if user_input.lower() == 'exit':
            break
        
        # Append user input to the dialogs list
        dialogs[0][0]["content"] = user_input

        # Use the generator to get model response
        result = generator.chat_completion(
            dialogs,
            max_gen_len=max_gen_len,
            temperature=temperature,
            top_p=top_p,
        )[0]

        # Print model response
        print(f"Model: {result['generation']['content']}")

if __name__ == "__main__":
    fire.Fire(main)

然后运行

torchrun --nproc_per_node 1 chat.py     --ckpt_dir Meta-Llama-3-8B-Instruct/     --tokenizer_path Meta-Llama-3-8B-Instruct/tokenizer.model     --max_seq_len 512 --max_batch_size 6

版权声明:本文为博主作者:GodGump原创文章,版权归属原作者,如果侵权,请联系我们删除!

原文链接:https://blog.csdn.net/GodGump/article/details/138139562

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
扎眼的阳光的头像扎眼的阳光普通用户
上一篇 2024年5月6日
下一篇 2024年5月6日

相关推荐