labelme制作yolov5模型的数据集

说明

labelme制作yolov5模型的数据集,超级详细,主要步骤:

  1. labelme安装和使用教程
  2. python实现json文件转txt文件格式
  3. python实现对指定格式文件进行提取

找一批牛和马的数据集,用来做YOLOv5实现牛马检测识别任务,数据集格式如下:

1、安装labelme环境和labelme标注教程

(1)进入pycharm在终端输入:

pip install labelme


(2)安装完labelme后,在终端输入labelme标注工具:

(3)点击Open dir找到数据集所放的位置,然后选择需要标注的数据集所在的文件夹:

(4)点击Edit,选择标注的方式(我选择的是矩形框标注(Create Rectangle)):

(5)框出目标物,单击鼠标左键弹出标签名称,输入标签值(此实验室是牛和马标注,我的标签值是cattle和horse),标签值填写好后点击ok

(6) 标注完一张后,进行保存和下一张继续标注,快捷键Ctrl+s保存,按键‘d’切换下一张图片:

(7)把所有图片标注完后大概是这个样子(标注结果json也放在了图片所在的目录中):

2、python实现json文件转txt文件格式

将labelme标注的结果json文件转换为yolov5模型需要的txt文件格式

import os
import numpy as np
import json
from glob import glob
import cv2
from sklearn.model_selection import train_test_split
from os import getcwd

classes = ["cattle", "horse"]
# 1.标签路径
labelme_path = r"C:/Users/xxxx/Desktop/images/dataset/cattle/"
isUseTest = True  # 是否创建test集
# 3.获取待处理文件
files = glob(labelme_path + "*.json")
files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]
print(files)
if isUseTest:
    trainval_files, test_files = train_test_split(files, test_size=0.1, random_state=55)
else:
    trainval_files = files
# split
train_files, val_files = train_test_split(trainval_files, test_size=0.1, random_state=55)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)

wd = getcwd()
print(wd)

def ChangeToYolo5(files, txt_Name):
    if not os.path.exists('tmp/'):
        os.makedirs('tmp/')
    list_file = open('tmp/%s.txt' % (txt_Name), 'w')
    for json_file_ in files:
        json_filename = labelme_path + json_file_ + ".json"
        imagePath = labelme_path + json_file_ + ".jpg"
        list_file.write('%s/%s\n' % (wd, imagePath))
        out_file = open('%s/%s.txt' % (labelme_path, json_file_), 'w')
        json_file = json.load(open(json_filename, "r", encoding="utf-8"))
        height, width, channels = cv2.imread(labelme_path + json_file_ + ".jpg").shape
        for multi in json_file["shapes"]:
            points = np.array(multi["points"])
            xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0
            xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0
            ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0
            ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0
            label = multi["label"]
            if xmax <= xmin:
                pass
            elif ymax <= ymin:
                pass
            else:
                cls_id = classes.index(label)
                b = (float(xmin), float(xmax), float(ymin), float(ymax))
                bb = convert((width, height), b)
                out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
                print(json_filename, xmin, ymin, xmax, ymax, cls_id)

ChangeToYolo5(train_files, "train")
ChangeToYolo5(val_files, "val")
ChangeToYolo5(test_files, "test")
  • 代码运行
    代码需要修改的地方,如 下图两个标出的方框中,第一个方框为对应的两个标签值,标签值cattle(牛)对应的是0、horse(马)对应的是1。
    第二个方框为json所在文件夹的存储路径。

  • 运行结果:
    json文件转换生成的txt文件保存到当前目录下,如下图:

    除此之外,还在当前目录下生成如下文件:

3、python实现对指定格式文件进行提取

上面第二步可以看出文件太乱了,所有文件包括图片、对图片的标注结果json的文件以及生成的txt格式的文件都在一个文件夹内,所以要把他们提取到指定文件夹里面,实现代码:

import os
import shutil

#文件存放目录
source_folder = r"C:/Users/xxx/Desktop/data/images/"
#提取文件保存目录
destination_folder = r"C:/Users/xxx/Desktop/data/train/labels/"
# 自动创建输出目录
if not os.path.exists(destination_folder):
    os.makedirs(destination_folder)

# 遍历所有子文件夹
for parent_folder, _, file_names in os.walk(source_folder):
    # 遍历当前子文件夹中的所有文件
    for file_name in file_names:
        # 只处理图片文件
        # if file_name.endswith(('jpg', 'jpeg', 'png', 'gif')):#提取jpg、jpeg等格式的文件到指定目录
        if file_name.endswith(('.txt')):#提取json格式的文件到指定目录
            # 构造源文件路径和目标文件路径
            source_path = os.path.join(parent_folder, file_name)
            destination_path = os.path.join(destination_folder, file_name)
            # 复制文件到目标文件夹
            shutil.copy(source_path, destination_path)
  • 代码讲解:
    如下图,代码只修改如下三个地方,第一个红框是:原文件存放路径,第二个是提取后保存的目标路径,第三个是提取文件的格式,下面是对图片进行提取,我的位置是保存到路径下:

C:/Users/xxx/Desktop/data/train/images/

  • 运行结果:
  • 同样的方法对txt文件进行提取:
  • 提取结果:

    再来进行数据拆分:
    训练集:验证集:测试集=7:2:1,得到如下数据:

    数据集的格式如下:
dataset
  |——test
  	   |——images
  |——train
  	   |——images
  	   |——labels
  |——val
  	   |——images
  	   |——labels

其中images里面是图片:

labels里面装的是标注的结果转换而来的txt文件:

值得注意的是,train文件或者val文件夹里面的images和labels里面的文件是一一对应的:

至此,yolov5的标准数据集制作完成。

如何训练复现yolov5模型请移步下一章。

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
心中带点小风骚的头像心中带点小风骚普通用户
上一篇 2023年7月15日
下一篇 2023年7月15日

相关推荐

此站出售,如需请站内私信或者邮箱!