【Visdrone数据集】Vsidrone+Yolov5结果记录

Visdrone在YOLOV5上的结果

  • YOLOV5
    • yolov5s epoch=100
      • 训练
      • 验证集
      • 测试集
    • yolov5s epoch=300
      • 训练
      • 验证集
      • 测试集
  • YOLOv5l
    • yolov5l epoch=300(实际运行了240epoch左右 提前终止了)
      • 训练
      • 验证集
      • 测试集
    • yolov5l splite
  • yolov5+swim transformer

YOLOV5

yolov5s epoch=100

训练

训练代码:yolov5s 100epoch

  • 命令
python train.py --data VisDrone.yaml --weights yolov5s.pt --img 640

分辨率:img=640

输出权重文件:exp4

验证集

  • 运行验证集命令:
python val.py --weights ./runs/train/exp4/weights/best.pt --data VisDrone.yaml --img 640 --task val
  • 验证集结果

         Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 18/18 [00:16<00:00,  1.11it/s]                                               
            all        548      38759      0.443       0.34       0.33       0.18                                                                                                
     pedestrian        548       8844      0.472      0.379      0.388      0.163                                                                                                
         people        548       5125      0.442      0.336      0.322      0.111                                                                                                
        bicycle        548       1287      0.251      0.156      0.114     0.0415                                                                                                
            car        548      14064       0.63      0.719       0.73      0.488                                                                                                
            van        548       1975      0.467      0.354      0.354       0.24                                                                                                
          truck        548        750      0.478      0.301      0.314      0.194                                                                                                
       tricycle        548       1045      0.432      0.197      0.198      0.101                                                                                                
    

    awning-tricycle 548 532 0.26 0.126 0.111 0.0697
    bus 548 251 0.533 0.406 0.388 0.238
    motor 548 4886 0.466 0.426 0.379 0.149

测试集

  • 运行测试集命令:
python val.py --weights ./runs/train/exp4/weights/best.pt --data VisDrone.yaml --img 640 --task val
  • 测试集结果
             Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 51/51 [00:26<00:00,  1.92it/s]                                               
               all       1610      75102      0.394      0.309      0.282       0.15                                                                                                
        pedestrian       1610      21006      0.415      0.252      0.245     0.0928                                                                                                
            people       1610       6376      0.393      0.172      0.162     0.0511                                                                                                
           bicycle       1610       1302      0.231     0.0891     0.0767     0.0277                                                                                                
               car       1610      28074      0.587      0.715      0.693      0.412                                                                                                
               van       1610       5771       0.35      0.374      0.311       0.19                                                                                                
             truck       1610       2659      0.368      0.389      0.317      0.176                                                                                                
          tricycle       1610        530      0.229      0.175      0.115     0.0561                                                                                                
   awning-tricycle       1610        599      0.364      0.139      0.152     0.0834                                                                                                
               bus       1610       2940       0.62      0.505      0.529      0.337                                                                                                
             motor       1610       5845      0.379      0.282       0.22     0.0781     

yolov5s epoch=300

训练

训练代码:yolov5s 300epoch (直接在train.py中改了epoch默认值)

  • 命令
python train.py --data VisDrone.yaml --weights yolov5s.pt --img 640

分辨率:img=640

输出权重文件:exp5

验证集

  • 运行验证集命令
 python val.py --weights ./runs/train/exp5/weights/best.pt --data VisDrone.yaml --img 640 --task val
  • 验证集结果
             Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 18/18 [00:16<00:00,  1.12it/s]
               all        548      38759      0.466      0.353       0.35      0.194
        pedestrian        548       8844       0.48      0.389      0.401       0.17
            people        548       5125      0.453      0.348      0.332       0.12
           bicycle        548       1287      0.303      0.145      0.129     0.0465
               car        548      14064      0.641      0.727       0.74        0.5
               van        548       1975      0.464      0.376      0.374      0.255
             truck        548        750      0.515      0.317      0.332      0.205
          tricycle        548       1045      0.421      0.224      0.214      0.112
   awning-tricycle        548        532      0.316      0.145      0.125     0.0795
               bus        548        251      0.597      0.426      0.457      0.292
             motor        548       4886      0.474      0.437      0.394       0.16

测试集

  • 运行测试集命令
 python val.py --weights ./runs/train/exp5/weights/best.pt --data VisDrone.yaml --img 640 --task test

-测试集结果

                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 51/51 [00:26<00:00,  1.93it/s]
                   all       1610      75102      0.421      0.314      0.294      0.158
            pedestrian       1610      21006       0.43      0.256      0.249      0.095
                people       1610       6376      0.424      0.168      0.166      0.055
               bicycle       1610       1302      0.255      0.073     0.0811     0.0284
                   car       1610      28074      0.605      0.718      0.699      0.419
                   van       1610       5771      0.371      0.365       0.32      0.199
                 truck       1610       2659        0.4      0.384      0.332      0.189
              tricycle       1610        530      0.254      0.209      0.143     0.0664
       awning-tricycle       1610        599      0.415      0.174      0.169     0.0897
                   bus       1610       2940      0.657      0.506      0.546      0.351
                 motor       1610       5845      0.404      0.285      0.233     0.0849

YOLOv5l

yolov5l epoch=300(实际运行了240epoch左右 提前终止了)

训练

  • 训练运行命令
python train.py --data VisDrone.yaml --weights yolov5l.pt --img 640 --device 0 --batch-size 8 --cfg models/yolov5l.yaml --device 0,1 --name yolov5l_visdrone

分辨率:640*640 epoch=300
输出权重文件夹: yolov5l_visdrone

验证集

  • 运行验证集命令
 python val.py --weights ./runs/train/yolov5l_visdrone/weights/best.pt --data VisDrone.yaml --img 640 --task val
  • 验证集结果
              Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 18/18 [00:22<00:00,  1.23s/it]                                               
               all        548      38759      0.532      0.407      0.417       0.25                                                                                                
        pedestrian        548       8844      0.593      0.447       0.49      0.234                                                                                                
            people        548       5125      0.521      0.367      0.385      0.153                                                                                                
           bicycle        548       1287      0.376      0.204      0.199      0.086                                                                                                
               car        548      14064      0.727      0.755      0.788      0.563                                                                                                
               van        548       1975      0.527      0.434      0.432      0.312                                                                                                
             truck        548        750      0.545      0.369      0.395      0.267                                                                                                
          tricycle        548       1045      0.479      0.318      0.299       0.17                                                                                                
   awning-tricycle        548        532      0.304      0.173      0.153     0.0955                                                                                                
               bus        548        251      0.688      0.514      0.562      0.407                                                                                                
             motor        548       4886      0.555      0.488      0.466      0.212  

测试集

  • 测试集运行命令
 python val.py --weights ./runs/train/yolov5l_visdrone/weights/best.pt --data VisDrone.yaml --img 640 --task test
  • 测试集结果
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 51/51 [00:47<00:00,  1.08it/s]                                               
                   all       1610      75102       0.46      0.373      0.345      0.197                                                                                                
            pedestrian       1610      21006      0.517      0.302      0.314      0.129                                                                                                
                people       1610       6376      0.461      0.201      0.201     0.0711                                                                                                
               bicycle       1610       1302      0.297      0.121      0.119     0.0479                                                                                                
                   car       1610      28074      0.663      0.748      0.744      0.472                                                                                                
                   van       1610       5771      0.417      0.417      0.371      0.245                                                                                                
                 truck       1610       2659      0.446      0.454       0.41      0.258                                                                                                
              tricycle       1610        530      0.297      0.328      0.211      0.108                                                                                                
       awning-tricycle       1610        599      0.367      0.235      0.195      0.111                                                                                                
                   bus       1610       2940      0.672      0.559      0.588      0.409                                                                                                
                 motor       1610       5845      0.461      0.361        0.3      0.119                                                                                                

yolov5l splite

  • 验证集
python val.py --weights /home/sedlight/lxs/yolov5/yolov5-master/runs/train/yolov5l_visdrone_splite12/weights/best.pt  --da
ta VisDrone.yaml --img 2560 --task val
val: Scanning /home/sedlight/lxs/yolov5/datasets/VisDrone/VisDrone2019-DET-val/labels.cache... 548 images, 0 backgrounds, 0 corrupt: 100%|██████████| 548/548 [00:00<?, ?it/s]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 69/69 [01:41<00:00,  1.47s/it]
                   all        548      38759        0.7      0.617      0.651      0.429
            pedestrian        548       8844      0.748      0.699      0.764      0.432
                people        548       5125      0.723      0.608      0.648      0.312
               bicycle        548       1287      0.638      0.466      0.513      0.284
                   car        548      14064      0.837      0.883      0.916      0.707
                   van        548       1975      0.681       0.62      0.652      0.498
                 truck        548        750      0.685      0.569      0.614      0.453
              tricycle        548       1045      0.631       0.56      0.563      0.364
       awning-tricycle        548        532      0.466      0.335       0.33      0.227
                   bus        548        251      0.847      0.726      0.787      0.611
                 motor        548       4886       0.74      0.702      0.729      0.403
  • 测试集
 Evaluation Completed. The peformance of the detector is presented as follows.
Average Precision  (AP) @[ IoU=0.50:0.95 | maxDets=500 ] = 32.96%.
Average Precision  (AP) @[ IoU=0.50      | maxDets=500 ] = 52.35%.
Average Precision  (AP) @[ IoU=0.75      | maxDets=500 ] = 35.21%.
Average Recall     (AR) @[ IoU=0.50:0.95 | maxDets=  1 ] = 0.39%.
Average Recall     (AR) @[ IoU=0.50:0.95 | maxDets= 10 ] = 6.19%.
Average Recall     (AR) @[ IoU=0.50:0.95 | maxDets=100 ] = 38.72%.
Average Recall     (AR) @[ IoU=0.50:0.95 | maxDets=500 ] = 41.24%.

yolov5+swim transformer

  • 验证集
 python val.py --weights /home/sedlight/lxs/yolov5/yolov5-master/runs/train/yolov5l_visdrone_splite_swin18/weights/best.pt --data VisDrone.yaml --img 2560 --task val --device 0,1
val: Scanning /home/sedlight/lxs/yolov5/datasets/VisDrone/VisDrone2019-DET-val/labels.cache... 548 images, 0 backgrounds, 0 corrupt: 100%|██████████| 548/548 [00:00<?, ?it/s]
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 69/69 [03:48<00:00,  3.31s/it]
                   all        548      38759      0.669      0.578      0.612      0.398
            pedestrian        548       8844       0.73      0.669      0.733      0.405
                people        548       5125      0.708      0.533      0.585      0.276
               bicycle        548       1287      0.589      0.447      0.475      0.254
                   car        548      14064      0.818      0.878      0.909      0.696
                   van        548       1975       0.64       0.59      0.624      0.477
                 truck        548        750      0.598      0.556      0.563      0.401
              tricycle        548       1045      0.656      0.456      0.507      0.326
       awning-tricycle        548        532      0.468      0.283       0.29      0.198
                   bus        548        251      0.764      0.684      0.733       0.56
                 motor        548       4886      0.717      0.681      0.707      0.383
Speed: 2.3ms pre-process, 370.9ms inference, 23.0ms NMS per image at shape (8, 3, 2560, 2560)
  • 测试集matlab
Evaluation Completed. The peformance of the detector is presented as follows.
Average Precision  (AP) @[ IoU=0.50:0.95 | maxDets=500 ] = 30.39%.
Average Precision  (AP) @[ IoU=0.50      | maxDets=500 ] = 48.15%.
Average Precision  (AP) @[ IoU=0.75      | maxDets=500 ] = 32.51%.
Average Recall     (AR) @[ IoU=0.50:0.95 | maxDets=  1 ] = 0.38%.
Average Recall     (AR) @[ IoU=0.50:0.95 | maxDets= 10 ] = 6.39%.
Average Recall     (AR) @[ IoU=0.50:0.95 | maxDets=100 ] = 36.27%.
Average Recall     (AR) @[ IoU=0.50:0.95 | maxDets=500 ] = 38.16%.

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2023年11月10日
下一篇 2023年11月10日

相关推荐

此站出售,如需请站内私信或者邮箱!