PCA主成分分析——重构人脸图像(MATLAB)

PCA主成分分析是将多维数据按照主成分降维的一种方法。PCA的主要流程是:

(1)获取数据矩阵。这些数据的维度要保持相同(如果是图片的话,那图片的尺寸保持相同)。

(2)对数据进行中心化处理。计算出每个维度的均值,得到一个均值向量,用数据矩阵减去此向量,这样就完成了中心化处理。

(3)计算协方差。用第二步求得的中心化处理后的数据矩阵做协方差。

(4)求协方差的特征值和特征向量。并且按照特征值从大到小排序,对应的特征向量也相同排序。

(5)用前几个特征向量组成变换矩阵W,然后降维操作就是用W乘以数据矩阵,得到了低维度的数据。

重构就是用变换后的数据乘以W的转置,得到之前的原始数据。

实验结果:

特征值从大到小排序:

PCA主成分分析——重构人脸图像(MATLAB)

人脸重构:

PCA主成分分析——重构人脸图像(MATLAB)PCA主成分分析——重构人脸图像(MATLAB)代码下载: PCA主成分分析重构人脸图像-机器学习文档类资源-CSDN下载利用PCA主成分分析,对人脸图像进行降维压缩,之后重构人脸图像。更多下载资源、学习资料请访问CSDN下载频道.PCA主成分分析——重构人脸图像(MATLAB)https://download.csdn.net/download/k1ttyLove/85610913

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
扎眼的阳光的头像扎眼的阳光普通用户
上一篇 2022年6月13日
下一篇 2022年6月13日

相关推荐

此站出售,如需请站内私信或者邮箱!