混沌精英黏菌算法-附代码

混沌精英黏菌算法


摘要:为进一步提高标准黏菌算法的收敛速度和求解精度,采用 Tent 混沌映射丰富种群多样性,同时引入精英反向学习策略扩大搜索范围。

1.黏菌算法

基础黏菌算法的具体原理参考,我的博客:https://blog.csdn.net/u011835903/article/details/113710762

2.改进黏菌算法

2.1 混沌初始化

采用 Tent 混沌映射在 SMA 算法迭代初期进行种群初始化,使得个体位置均匀分布在搜索空间内, 有助于提高算法求解 效率。Tent 混池映射的数学表达式为
混沌精英黏菌算法-附代码
式(10)中: 混沌精英黏菌算法-附代码 表示映射次数; 混沌精英黏菌算法-附代码 表示第 混沌精英黏菌算法-附代码 次映射函 数值。

2.2 精英反向学习策略

反向学习策略(opposition-based learning, OBL) 是由 Tizhoosh 混沌精英黏菌算法-附代码 于 2005 年提出一种优化机制, 其主 要原理是针对当前可行解, 同时计算和评估其反向 解, 从中选取较优的解作为下一代个体 混沌精英黏菌算法-附代码 。精英反 向学习 (elite opposition-based learning, EOBL) 在前 者基础上利用精英个体比一般个体包括更加丰富 的有效信息和反向种群来增加种群多样性 混沌精英黏菌算法-附代码, 扩大 搜索空间; 通讨引入 EOBL 策略能够有效增强算法 的全局搜索能力, 进一步提高算法的寻优性能。假 设当前黏窗种群中精英个体(即当前最优解)为 混沌精英黏菌算法-附代码, 其中 混沌精英黏菌算法-附代码 为优化问题的空间 维度, 则其精英反向解 混沌精英黏菌算法-附代码 可 以定义为
混沌精英黏菌算法-附代码
式 (11) 中: 混沌精英黏菌算法-附代码 为第 混沌精英黏菌算法-附代码 维个体的数值; 混沌精英黏菌算法-附代码 为区间 混沌精英黏菌算法-附代码 内服从正态分布的随机数; 混沌精英黏菌算法-附代码 表示第 混沌精英黏菌算法-附代码 维搜 索空间的动态边界, 其定义为
混沌精英黏菌算法-附代码
混沌精英黏菌算法-附代码
式中: 混沌精英黏菌算法-附代码 分别为第 混沌精英黏菌算法-附代码 维个体的最小 值和最大值。
当生成的反向解超出 混沌精英黏菌算法-附代码 边界范眷时, 使用随机生成的方法进行越界重置, 具体描述为
混沌精英黏菌算法-附代码
综合上述, 改进的混池精英秥菌算法 (chaotic elite slime mould algorithm, CESMA) 可以利用伪代 码表述其执行流程,如表 1 所示。

请添加图片描述

3.实验结果

请添加图片描述

4.参考文献

[1]肖亚宁,孙雪,李三平,姚金言.基于混沌精英黏菌算法的无刷直流电机转速控制[J].科学技术与工程,2021,21(28):12130-12138.

5.Matlab代码

6.python代码

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
上一篇 2022年10月8日 下午8:36
下一篇 2022年10月8日 下午8:39

相关推荐

本站注重文章个人版权,不会主动收集付费或者带有商业版权的文章,如果出现侵权情况只可能是作者后期更改了版权声明,如果出现这种情况请主动联系我们,我们看到会在第一时间删除!本站专注于人工智能高质量优质文章收集,方便各位学者快速找到学习资源,本站收集的文章都会附上文章出处,如果不愿意分享到本平台,我们会第一时间删除!