BERTopic:NLP主题模型的未来!

edee2bd434af08d7c384d648473031e1.png

文| ZenMoore
编| 小轶

以前我一直以为,主题建模(提取文档的主题词)这种机器学习时代就开始研究的基础工具,现在肯定已经到头了,虽然…有时效果可能不是那么让人满意。

但突然看到一则推文:“彻底疯了!不需要预先清洗数据,就能够快速拿到质量难以置信的主题!” “NLP 主题模型的未来!”

49cb6a11a405a432dd204d17b9effa29.png6e1583b0b686d375be967e0628bae349.png

好家伙!让人又爱又恨又离不开的主题模型,终于要升华了吗?!!

看了论文之后,恍然大悟,完全没有想到现在主流主题模型的问题竟然出在这么细节的地方:基于密度聚类和基于中心采样(主题词)之间的 gap ! 而且这个问题也竟然可以通过非常简单的方式解决……

回顾一下之前的主题建模的方式,可以简单地分成两种:

  1. 基于词袋的模型:比如 LDA(潜在狄利克雷分配)、NMF(非负矩阵分解) 等。

  2. 基于预训练词嵌入的聚类方法:比如 Top2Vec[1], CTM[2], Sia et al., 2020[3]等。

基于词袋的方法主要是基于文档-单词的共现频率特征来抽取主题。其缺点在于:没有充分考虑每个单词的上下文语义 。例如 LDA 算法,假定主题的先验分布和单词的先验分布都服从狄利克雷分布,又假定每个主题的单词分布、每个文档的主题分布均服从多项分布,然后再在“文档-单词”共现数据上通过 EM 等算法去求解得到主题。

在深度学习时代,我们更偏好使用基于预训练词嵌入的方式。一般而言,这类方法首先通过一个预训练的模型(比如 Doc2Vec、Word2Vec、GloVe、BERT)计算出文档的向量表示以及单词的向量表示,然后把它们嵌入到同一个语义空间中。假定主题相似的文档在嵌入空间中的位置也是相近的(聚类),然后从这个嵌入空间的簇中去采样主题词。

通常这些簇以基于密度的方式聚类[5]形成。这样聚类后形成的簇不一定是“球状”的(sphere-like),每个簇的边界形状可以千奇百怪(如下图)。

  • 基于质心的聚类:假定每个簇是一个球状结构(sphere-like) (其实是一个并不太合理的约束…)

  • 基于层次的聚类:假定数据点存在层次关系,例如“国家”-“省份”-“城市”这种。

  • 基于密度的聚类:挨在一起的就是一类的,不一定必须是 sphere-like 所以,基于层次和密度的聚类是最合理的方式。

然而,此前的方法是怎么做的呢?例如 Top2Vec[1],它会先将簇的质心(centroid) 作为主题向量, 然后认为:对于一个给定的词语,其词向量与主题向量距离越近,则它越能代表这一主题

这就出现问题了朋友们:聚类时是基于密度的,采词却是基于与质心的距离!(盲生发现了华点!)

举个栗子。在下图中有一个长条状的簇,其质心用红色“X”标记。按照 Top2Vec 的做法,采词空间如红色圆周所示。可以看到,采词空间中有一部分并不在簇,就很容易误采到其他簇的单词

26ebac10a3264e392e63e16b9dd9a828.png
▲红色的圆圈就是所谓的“采词空间”,很明显超出了簇的范围

而今天要介绍的这篇 BERTopic, 使用一种基于类别的 TF-IDF 变体,解决了这个问题:聚类和采词之间的不一致不兼容问题(gap)。

论文标题
BERTopic: Neural topic modeling with a class-based TF-IDF procedure

论文作者
Maarten Grootendorst

论文链接
https://arxiv.org/pdf/2203.05794.pdf

原理

BERTopic 方法的步骤如下:

  1. 首先使用预训练模型计算 document embeddings (比如常用的 Sentence-BERT 等)

  2. 因为 document embeddings 维度很高,在嵌入空间中就非常稀疏,不容易进行聚类,所以需要先进行降维,比如 PCA 或者 t-SNE 等方法,这里用的是 UMAP[4]

  3. 基于层次和密度进行聚类,这里用的是典型的 HDBSCAN[5] 算法

  4. 划重点:使用 class-based TF-IDF 变体提取每个簇的主题词

因为上文所说的这个 gap 产生的原因,本质上就是“采词空间”没有收束到对应的簇上。所以只要想办法把候选集合定在簇里面就好了!😋

当然可以通过缩小 sphere 来约束,但是这样肯定会漏掉不少候选词…

静态主题建模

静态主题建模假定时间是静止的当下,不考虑文档主题分布随着时间的变化。

回顾一下 TF-IDF 算法 :

式子中,t 代表单词(term), d 代表文档(document), 这个值的意思是 t 在 d 中的词频乘以 log(语料总文档数量 比 包含t的文档的数量)。

BERTopic 使用的是相同的策略,只不过文档 d 做了一些改变:将一个 cluster (也就是一个类 class) 中的所有文档拼接起来作为新的单个文档 d. 这样 TF-IDF 公式就变成了 c-TF-IDF:

402 Payment Required

其中,c 表示 class, A 表示每个 class 的平均单词数量, 表示 class c 中 t 的频率, 表示所有 class 中 t 的频率。

就这样,簇 c 里的每个单词 t 都有了一个分数,分数越高,越能代表这个簇的主题~ 显然这个候选集合是收束在簇 c 的范围里面的。

动态主题建模

和静态主题建模不同,动态主题建模考虑到了文档本身随时间的变化特征,即2022年的文档和2012年的文档主题分布是不一样的,2022年大家在讨论的主题是“三体”即将上映,而2012年大家讨论的主题是“2012世界末日”.

针对这种情况,本文引入了新的 TF-IDF 公式:

402 Payment Required

这里的 i 表示第 i 个 timestep.

平滑化

对于动态主题建模另外一个可能有用的假设是,不同 timestep 的 topic 可能是线性相关的,因此作者引入了平滑技巧(optional):

  1. 首先进行 L1-normalization (即除以 L1-norm), for each topic and timestep.

  2. 然后对 normalized vector 进行 average 平滑操作:将第 i 时刻的值与第 i-1 时刻的值进行一个平均作为新的第 i 时刻的值。

效果

作者使用 "all-mpnetbase-v2" SBERT model 作为 embedding model, 在 20 NewsGroups、BBC News、Trump 等数据集上进行了实验,对比结果如下图:

8b3f11f042e0bf90d2239d7006998b53.png
▲可见,BERTopic 有更好的综合能力

然后不同的 embedding model 对效果也会有影响:

5d5d24b5640c5ab5beb69b3761d86849.png

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
青葱年少的头像青葱年少普通用户
上一篇 2023年2月25日 下午6:29
下一篇 2023年2月25日 下午6:30

相关推荐

此站出售,如需请站内私信或者邮箱!