项目地址:NLP-Application-and-Practice/11_BiLSTM-ner-bilstm-crf/11.3-BiLSTM-CRF的中文命名实体识别/ner_bilstm_crf at master · zz-zik/NLP-Application-and-Practice (github.com)
读取renmindata.pkl文件
read_file_pkl.py
# encoding:utf-8
import pickle
# 读取数据
def load_data():
pickle_path = './data_target_pkl/renmindata.pkl'
with open(pickle_path, 'rb') as inp:
word2id = pickle.load(inp)
id2word = pickle.load(inp)
tag2id = pickle.load(inp)
id2tag = pickle.load(inp)
x_train = pickle.load(inp)
y_train = pickle.load(inp)
x_test = pickle.load(inp)
y_test = pickle.load(inp)
x_valid = pickle.load(inp)
y_valid = pickle.load(inp)
print("train len:", len(x_train))
print("test len:", len(x_test))
print("valid len:", len(x_valid))
return word2id, tag2id, x_train, x_test, x_valid, y_train, y_test, y_valid, id2tag
def main():
word = load_data()
print(len(word))
if __name__ == '__main__':
main()
这段代码定义了一个函数load_data(),用于读取存储在文件’../data_target_pkl/renminddata.pkl’中的数据。函数首先使用pickle模块打开文件,然后逐个加载文件中的数据并赋值给相应的变量。最后,打印出训练集、测试集和验证集的长度,并返回这些变量。在main()函数中,调用load_data()函数并打印其返回值。这段代码的目的是读取并加载pickle文件中的数据,并在main()函数中测试load_data()函数的正确性。
构建BiLSTM-CRF
bilstm_crf_model.py
# encoding:utf-8
import torch
import torch.nn as nn
from TorchCRF import CRF
from torch.utils.data import Dataset
# 命名体识别数据
class NERDataset(Dataset):
def __init__(self, X, Y, *args, **kwargs):
self.data = [{'x': X[i], 'y': Y[i]} for i in range(X.shape[0])]
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return len(self.data)
# LSTM_CRF模型
class NERLSTM_CRF(nn.Module):
def __init__(self, config):
super(NERLSTM_CRF, self).__init__()
self.embedding_dim = config.embedding_dim
self.hidden_dim = config.hidden_dim
self.vocab_size = config.vocab_size
self.num_tags = config.num_tags
self.embeds = nn.Embedding(self.vocab_size, self.embedding_dim)
self.dropout = nn.Dropout(config.dropout)
self.lstm = nn.LSTM(
self.embedding_dim,
self.hidden_dim // 2,
num_layers=1,
bidirectional=True,
batch_first=True, # 该属性设置后,需要特别注意数据的形状
)
self.linear = nn.Linear(self.hidden_dim, self.num_tags)
# CRF 层
self.crf = CRF(self.num_tags)
def forward(self, x, mask):
embeddings = self.embeds(x)
feats, hidden = self.lstm(embeddings)
emissions = self.linear(self.dropout(feats))
outputs = self.crf.viterbi_decode(emissions, mask)
return outputs
def log_likelihood(self, x, labels, mask):
embeddings = self.embeds(x)
feats, hidden = self.lstm(embeddings)
emissions = self.linear(self.dropout(feats))
loss = -self.crf.forward(emissions, labels, mask)
return torch.sum(loss)
# ner chinese
这段代码定义了一个用于命名体识别的LSTM_CRF模型。NERDataset类是一个自定义的用于存储命名体识别数据的类,继承自torch.utils.data.Dataset。NERLSTM_CRF类是一个自定义的继承自torch.nn.Module的类,用于实现LSTM_CRF模型的前向传播和训练过程。该模型包含嵌入层、LSTM层、线性层和CRF层。通过调用log_likelihood方法可以计算给定输入序列的对数似然。
模型信息
utils.py
# encoding:utf-8
import torch
from utils import load_data
from utils import parse_tags
from utils import utils_to_train
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report
word2id = load_data()[0]
max_epoch, device, train_data_loader, valid_data_loader, test_data_loader, optimizer, model = utils_to_train()
# 中文命名体识别
class ChineseNER(object):
def train(self):
for epoch in range(max_epoch):
# 训练模式
model.train()
for index, batch in enumerate(train_data_loader):
# 梯度归零
optimizer.zero_grad()
# 训练数据-->gpu
x = batch['x'].to(device)
mask = (x > 0).to(device)
y = batch['y'].to(device)
# 前向计算计算损失
loss = model.log_likelihood(x, y, mask)
# 反向传播
loss.backward()
# 梯度裁剪
torch.nn.utils.clip_grad_norm_(parameters=model.parameters(),
max_norm=10)
# 更新参数
optimizer.step()
if index % 200 == 0:
print('epoch:%5d,------------loss:%f' %
(epoch, loss.item()))
# 验证损失和精度
aver_loss = 0
preds, labels = [], []
for index, batch in enumerate(valid_data_loader):
# 验证模式
model.eval()
# 验证数据-->gpu
val_x, val_y = batch['x'].to(device), batch['y'].to(device)
val_mask = (val_x > 0).to(device)
predict = model(val_x, val_mask)
# 前向计算损失
loss = model.log_likelihood(val_x, val_y, val_mask)
aver_loss += loss.item()
# 统计非0的,也就是真实标签的长度
leng = []
res = val_y.cpu()
for i in val_y.cpu():
tmp = []
for j in i:
if j.item() > 0:
tmp.append(j.item())
leng.append(tmp)
for index, i in enumerate(predict):
preds += i[:len(leng[index])]
for index, i in enumerate(val_y.tolist()):
labels += i[:len(leng[index])]
# 损失值与评测指标
aver_loss /= (len(valid_data_loader) * 64)
precision = precision_score(labels, preds, average='macro')
recall = recall_score(labels, preds, average='macro')
f1 = f1_score(labels, preds, average='macro')
report = classification_report(labels, preds)
print(report)
torch.save(model.state_dict(), 'params1.data_target_pkl')
# 预测,输入为单句,输出为对应的单词和标签
def predict(self, input_str=""):
model.load_state_dict(torch.load("../models/ner/params1.data_target_pkl"))
model.eval()
if not input_str:
input_str = input("请输入文本: ")
input_vec = []
for char in input_str:
if char not in word2id:
input_vec.append(word2id['[unknown]'])
else:
input_vec.append(word2id[char])
# convert to tensor
sentences = torch.tensor(input_vec).view(1, -1).to(device)
mask = sentences > 0
paths = model(sentences, mask)
res = parse_tags(input_str, paths[0])
return res
# 在测试集上评判性能
def test(self, test_dataloader):
model.load_state_dict(torch.load("../models/ner/params1.data_target_pkl"))
aver_loss = 0
preds, labels = [], []
for index, batch in enumerate(test_dataloader):
# 验证模式
model.eval()
# 验证数据-->gpu
val_x, val_y = batch['x'].to(device), batch['y'].to(device)
val_mask = (val_x > 0).to(device)
predict = model(val_x, val_mask)
# 前向计算损失
loss = model.log_likelihood(val_x, val_y, val_mask)
aver_loss += loss.item()
# 统计非0的,也就是真实标签的长度
leng = []
for i in val_y.cpu():
tmp = []
for j in i:
if j.item() > 0:
tmp.append(j.item())
leng.append(tmp)
for index, i in enumerate(predict):
preds += i[:len(leng[index])]
for index, i in enumerate(val_y.tolist()):
labels += i[:len(leng[index])]
# 损失值与评测指标
aver_loss /= len(test_dataloader)
precision = precision_score(labels, preds, average='macro')
recall = recall_score(labels, preds, average='macro')
f1 = f1_score(labels, preds, average='macro')
report = classification_report(labels, preds)
print(report)
if __name__ == '__main__':
cn = ChineseNER()
cn.train()
这段代码定义了一个用于命名实体识别的模型和训练函数。其中,parse_tags函数用于将模型的预测结果解码成可读的实体类别;Config类定义了一些超参数;utils_to_train函数返回训练过程中需要用到的各种对象和参数。
BiLSTM-CRF的训练
train.py
# encoding:utf-8
import torch
from utils import load_data
from utils import parse_tags
from utils import utils_to_train
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report
word2id = load_data()[0]
max_epoch, device, train_data_loader, valid_data_loader, test_data_loader, optimizer, model = utils_to_train()
# 中文命名体识别
class ChineseNER(object):
def train(self):
for epoch in range(max_epoch):
# 训练模式
model.train()
for index, batch in enumerate(train_data_loader):
# 梯度归零
optimizer.zero_grad()
# 训练数据-->gpu
x = batch['x'].to(device)
mask = (x > 0).to(device)
y = batch['y'].to(device)
# 前向计算计算损失
loss = model.log_likelihood(x, y, mask)
# 反向传播
loss.backward()
# 梯度裁剪
torch.nn.utils.clip_grad_norm_(parameters=model.parameters(),
max_norm=10)
# 更新参数
optimizer.step()
if index % 200 == 0:
print('epoch:%5d,------------loss:%f' %
(epoch, loss.item()))
# 验证损失和精度
aver_loss = 0
preds, labels = [], []
for index, batch in enumerate(valid_data_loader):
# 验证模式
model.eval()
# 验证数据-->gpu
val_x, val_y = batch['x'].to(device), batch['y'].to(device)
val_mask = (val_x > 0).to(device)
predict = model(val_x, val_mask)
# 前向计算损失
loss = model.log_likelihood(val_x, val_y, val_mask)
aver_loss += loss.item()
# 统计非0的,也就是真实标签的长度
leng = []
res = val_y.cpu()
for i in val_y.cpu():
tmp = []
for j in i:
if j.item() > 0:
tmp.append(j.item())
leng.append(tmp)
for index, i in enumerate(predict):
preds += i[:len(leng[index])]
for index, i in enumerate(val_y.tolist()):
labels += i[:len(leng[index])]
# 损失值与评测指标
aver_loss /= (len(valid_data_loader) * 64)
precision = precision_score(labels, preds, average='macro')
recall = recall_score(labels, preds, average='macro')
f1 = f1_score(labels, preds, average='macro')
report = classification_report(labels, preds)
print(report)
torch.save(model.state_dict(), 'params1.data_target_pkl')
# 预测,输入为单句,输出为对应的单词和标签
def predict(self, input_str=""):
model.load_state_dict(torch.load("../models/ner/params1.data_target_pkl"))
model.eval()
if not input_str:
input_str = input("请输入文本: ")
input_vec = []
for char in input_str:
if char not in word2id:
input_vec.append(word2id['[unknown]'])
else:
input_vec.append(word2id[char])
# convert to tensor
sentences = torch.tensor(input_vec).view(1, -1).to(device)
mask = sentences > 0
paths = model(sentences, mask)
res = parse_tags(input_str, paths[0])
return res
# 在测试集上评判性能
def test(self, test_dataloader):
model.load_state_dict(torch.load("../models/ner/params1.data_target_pkl"))
aver_loss = 0
preds, labels = [], []
for index, batch in enumerate(test_dataloader):
# 验证模式
model.eval()
# 验证数据-->gpu
val_x, val_y = batch['x'].to(device), batch['y'].to(device)
val_mask = (val_x > 0).to(device)
predict = model(val_x, val_mask)
# 前向计算损失
loss = model.log_likelihood(val_x, val_y, val_mask)
aver_loss += loss.item()
# 统计非0的,也就是真实标签的长度
leng = []
for i in val_y.cpu():
tmp = []
for j in i:
if j.item() > 0:
tmp.append(j.item())
leng.append(tmp)
for index, i in enumerate(predict):
preds += i[:len(leng[index])]
for index, i in enumerate(val_y.tolist()):
labels += i[:len(leng[index])]
# 损失值与评测指标
aver_loss /= len(test_dataloader)
precision = precision_score(labels, preds, average='macro')
recall = recall_score(labels, preds, average='macro')
f1 = f1_score(labels, preds, average='macro')
report = classification_report(labels, preds)
print(report)
if __name__ == '__main__':
cn = ChineseNER()
cn.train()
这段代码实现了一个中文命名体识别的训练和预测功能。通过加载数据和训练参数,使用循环神经网络模型进行训练和验证,计算损失和评估指标,然后在测试集上进行性能评估。最后,提供一个函数用于对输入文本进行预测,并返回预测结果。
文章出处登录后可见!