数据结构-双向链表

前言:

在单链表那一篇博客中介绍了单链表和双向链表的优缺点,所以此篇博客直接分享怎样实现一个带头双向循环链表。

单链表博客:

http://t.csdnimg.cn/Kw7zLicon-default.png?t=N7T8http://t.csdnimg.cn/Kw7zL

1.头文件中的声明:

首先我们需要写一个结构体,双向带头链表的话需要一个前驱指针prev和一个后驱指针next,前驱指针的作用是方便找尾节点,因为头节点的prev指向的就是最后一个节点,后驱指针next的作用是方便插入和找头节点。

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>

typedef int LTDataType;
typedef struct Listnode
{
	struct ListNode* prev;
	struct ListNode* next;
	LTDataType data;
}LTNode;

LTNode* BuyLTNode(LTDataType x);//创建节点
LTNode* LTInit();//初始化
void LTPrint(LTNode* phead);//打印
void LTPushBack(LTNode* phead, LTDataType x);//尾插
void LTPopBack(LTNode* phead);//尾删
void LTPushFront(LTNode* phead, LTDataType x);//头插
void LTPopFront(LTNode* phead);//头删
int LTSize(LTNode* phead);//求有效数据
LTNode* LTFind(LTNode* phead, LTDataType x);
void LTInsert(LTNode* pos ,LTDataType x);//在pos位置之前插入x
void LTErase(LTNode* pos);//在pos位置删除
void LTDestroy(LTNode* phead);

2.带头双向链表的实现

2.1创建新节点

创建一个节点比较简单,首先malloc一块空间出来,然后将这个结构体的数据data设置成需要的数据,再将前驱指针和后驱指针全部置空就行,方便后续链接。

LTNode* BuyLTNode(LTDataType x)
{
	LTNode* node = (LTNode*)malloc(sizeof(LTNode));
	if (node == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}

	node->data = x;
	node->next = NULL;
	node->prev = NULL;

	return node;
}

2.2链表初始化

双向带头链表的初始化肯定需要一个头节点,所以使用BuyLTNode创建一个头节点phead,然后将phead的next指向自己,prev也指向自己。

LTNode* LTInit()
{
	LTNode* phead = BuyLTNode(0);
	phead->next = phead;
	phead->prev = phead;

	return phead;
}

2.3打印链表

打印链表也很简单,只需要创建一个结构体指针cur来遍历链表就可以了,循环的结束条件是cur为phead,为什么呢?因为尾节点的next不为NULL,而是头指针,如果条件设置为NULL的话,就会陷入死循环,所以当cur走到头节点的话就代表已经遍历完一遍了。

void LTPrint(LTNode* phead)
{
	LTNode* cur = phead->next;
	printf("phead");
	while (cur != phead)
	{
		printf("<->%d", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

2.4尾插

假设当前节点是这样的情况,我们要插入一个newnode,怎么尾插呢?这个时候我们就通过头节点phead找到尾节点n3,然后再尾插就可以了。首先定义一个结构体指针tail来找n3,然后将newnode进行链接,首先将newnode与tail进行链接,newnode->prev=tail,tail->next=newnode,再将newnode与phead进行链接,phead->prev=newnode,newnode->next=phead,然后newnode就在这个链表上完成尾插了。

 

void LTPushBack(LTNode* phead, LTDataType x)
{
	assert(phead);

	LTNode* tail = phead->prev;
	LTNode* newnode = BuyLTNode(x);

	newnode->prev = tail;
	tail->next = newnode;

	newnode->next = phead;
	phead->prev = newnode;
}

2.5尾删

尾删的话不仅要找到尾节点,还需要找到尾节点的前一个节点,所以创建一个尾节点tail,尾节点的前一个节点tailprev(tailprev=tail->prev),然后将tailprev与头节点进行链接,phead->prev=tailprev,tailprev->next=phead。

void LTPopBack(LTNode* phead)
{
	assert(phead);
	assert(phead->next != phead);

	LTNode* tail = phead->prev;
	LTNode* pretail = tail->prev;

	phead->prev = pretail;
	pretail->next = phead;
}

2.6头插

头插需要找到第一个节点,所以创建一个结构体指针tail指向第一个节点(tail=phead->next),然后将newnode与phead进行链接,phead->nedxt=newnode,newndoe->prev=phead,再将newnode与tail进行链接,newndoe->next=tail,tail->prev=newnode.

void LTPushFront(LTNode* phead, LTDataType x)
{
	assert(phead);
	LTNode* newnode = BuyLTNode(x);
	LTNode* tail = phead->next;

	phead->next = newnode;
	newnode->prev = phead;

	newnode->next = tail;
	tail->prev = newnode;
}

2.7头删

头删需要找到第一个和第二个节点,所以定义一个结构体指针first来指向第一个节点,second指向第二个节点(second=first->next),然后将第二个节点和phead进行链接,phead->next=second,second->prev=phead,然后释放第一个节点的空间,free(first)。

void LTPopFront(LTNode* phead)
{
	assert(phead);
	assert(phead->next!=phead);

	LTNode* first = phead->next;
	LTNode* second = first->next;
	phead->next =second;
	second->prev = phead;
	free(first);
}

2.8有效数据

求出链表的有效数据个数就比较简单了,遍历的时候size++就行了。

int LTSize(LTNode* phead)
{
	assert(phead);
	int size = 0;
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		size++;
		cur = cur->next;
	}
	return size;
	printf("\n");
}

2.9寻找节点

寻找节点也比较简单,在遍历链表的时候判断当前节点的data是否等于x即可。

LTNode* LTFind(LTNode* phead, LTDataType x)
{
	assert(phead);
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		if (cur->data = x)
		{
			return cur;
		}
		cur = cur->next;
	}
	return NULL;
}

2.10在pos位置之前插入x

这里需找到pos和pos前一个节点,所以创建一个结构体指针posprev指向pos的前一个节点(posprev=pos->prev),然后将newnode与posprev进行链接,posprev->next=newnode,newnoe->prev=posprev,再将newnode与pos进行链接,pos->prev=newnode,newnode->next=pos。

void LTInsert(LTNode* pos, LTDataType x)
{
	assert(pos);
	LTNode* newnode = BuyLTNode(x);
	LTNode* prepos = pos->prev;
	newnode->next = pos;
	pos->prev = newnode;
	newnode->prev = prepos;
	prepos->next = newnode;

}

将这个函数完成之后就可以对头插与尾插进行简化了。

尾插:

这里大家需要了解一下为什么第一个参数是phead,因为LTInsert这个函数是实现pos位置之前的插入,当我们需要尾插,那么尾巴的后一个节点是什么呢?不就是头节点吗!!

void LTPushBack(LTNode* phead, LTDataType x)
{
	assert(phead);

	LTInsert(phead, x);
}

头插:

头插就比较好理解了,第一个参数就是头节点的下一个节点。

void LTPushFront(LTNode* phead, LTDataType x)
{
	assert(phead);

	LTInsert(phead->next, x);
}

2.11删除pos位置的节点

删除pos位置需要找到pos的前一个节点和后一个节点,所以创建一个结构体指针posprev保存pos的前一个节点(posprev=pos->prev),再创建一个结构体指针保存pos的后一个节点(posnext=pos->next),然后将posprev与posnext进行链接,posprev->next=posnext,posnext->prev=posprev,然后free掉pos。

void LTErase(LTNode* pos)
{
	assert(pos);
	LTNode* posNext = pos->next;
	LTNode* posPrev = pos->prev;
	free(pos);
	posNext->prev = posPrev;
	posPrev->next = posNext;

}

将这个函数完成之后就可以对头删与尾删进行简化了。

头删:

void LTPopFront(LTNode* phead)
{
	assert(phead);
	assert(phead->next!=phead);

	LTErase(phead->next);
}

尾删:

尾节点通过头节点phead的前驱指针来找就好了。

void LTPopBack(LTNode* phead)
{
	assert(phead);
	assert(phead->next != phead);

	LTErase(phead->prev);
}

2.12销毁

销毁链表还是和单链表一样,区别就是循环结束条件是cur走到头节点,还有就是保存cur的后一个节点,最后还要free掉头节点,因为没有走到头节点。

void LTDestroy(LTNode* phead)
{
	assert(phead);
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		LTNode* next = cur->next;
		free(cur);
		cur = next;
	}
	free(phead);
}

今天的分享到这里就结束啦!谢谢老铁们的阅读,让我们下期再见。

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2023年12月8日
下一篇 2023年12月8日

相关推荐