YOLOv7+双目测距(python)

YOLOv7+双目测距(python)

  • 1. 实验效果
  • 2. 相关配置:
  • 3. 测距原理
  • 4. 实验流程
  • 5.相关代码
    • 5.1 双目相机参数stereoconfig.py
    • 5.2 图像处理
    • 5.3 测距代码
    • 5.4 主代码
  • 6.实验结果

1. YOLOv5+双目测距
2. zed+yolov5实现双目测距(直接调用,免标定)
3. zed+yolov4实现双目测距(直接调用,免标定)
4. 本文具体实现效果已在Bilibili发布,点击跳转
5. 如有需要,可以参考我上边的几篇文章进行对比👆👆👆

yolov7直接调用zed相机的代码也已经实现,可以运行10秒左右,会报cuda空间不足的错误,博主gpu为6G,可能是内存太小了。

1. 实验效果

经过一系列实验,结果表明yolov7结合双目实现测距效果不如yolov5,具体参数如下:
yolov5— 每帧速度:100-200ms
yolov7(不加多线程)— inference速度:400ms左右 NMS速度:1200-1500ms
yolov7(加多线程)— inference速度:400ms左右 NMS速度:200ms左右

inference:推理速度,指预处理之后的图像输入模型到模型输出结果的时间
NMS :你可以理解为后处理时间,对模型输出结果经行转换等

2. 相关配置:

电脑系统:win10 (linux及Ubuntu同样适配)
Python版本:3.6
相机型号:zed2i (普通双目也可用)
所用分辨率:2560×720 (这个可以自己调节)

3. 测距原理

测距原理详见:双目三维测距(python)

4. 实验流程

yolov7实验步骤和yolov5一样,大致流程: 双目标定→双目校正→立体匹配→结合yolov7→深度测距
找到目标识别源代码中输出物体坐标框的代码段
找到双目测距代码中计算物体深度的代码段
将步骤2与步骤1结合,计算得到目标框中物体的深度
找到目标识别网络中显示障碍物种类的代码段,将深度值添加到里面,进行显示

5.相关代码

5.1 双目相机参数stereoconfig.py

双目相机标定误差越小越好,我这里误差为0.1,尽量使误差在0.2以下

import numpy as np
# 双目相机参数
class stereoCamera(object):
    def __init__(self):

        self.cam_matrix_left = np.array([[1101.89299, 0, 1119.89634],
                                         [0, 1100.75252, 636.75282],
                                         [0, 0, 1]])
        self.cam_matrix_right = np.array([[1091.11026, 0, 1117.16592],
                                          [0, 1090.53772, 633.28256],
                                          [0, 0, 1]])

        self.distortion_l = np.array([[-0.08369, 0.05367, -0.00138, -0.0009, 0]])
        self.distortion_r = np.array([[-0.09585, 0.07391, -0.00065, -0.00083, 0]])

        self.R = np.array([[1.0000, -0.000603116945856524, 0.00377055351856816],
                           [0.000608108737333211, 1.0000, -0.00132288199083992],
                           [-0.00376975166958581, 0.00132516525298933, 1.0000]])

        self.T = np.array([[-119.99423], [-0.22807], [0.18540]])
        self.baseline = 119.99423  

5.2 图像处理

以下是stereo.py里对图像进行处理的代码
这些都是网上现成的,直接套用就可以

class stereo_dd:
    def __init__(self,imgl,imgr):
        self.left  = imgl
        self.right = imgr
    
    # 预处理
    def preprocess(self, img1, img2):
        # 彩色图->灰度图
        if(img1.ndim == 3):#判断为三维数组
            img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)  # 通过OpenCV加载的图像通道顺序是BGR
        if(img2.ndim == 3):
            img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

        # 直方图均衡
        img1 = cv2.equalizeHist(img1)
        img2 = cv2.equalizeHist(img2)
        return img1, img2

    '''
    # 消除畸变
    def undistortion(self, image, camera_matrix, dist_coeff):
        undistortion_image = cv2.undistort(image, camera_matrix, dist_coeff)
        return undistortion_image
    '''
    # 消除畸变
    def undistortion(self, imagleft,imagright, camera_matrix_left, camera_matrix_right, dist_coeff_left,dist_coeff_right):
        undistortion_imagleft  = cv2.undistort(imagleft,  camera_matrix_left,  dist_coeff_left )
        undistortion_imagright = cv2.undistort(imagright, camera_matrix_right, dist_coeff_right)
        return undistortion_imagleft, undistortion_imagright

    # 畸变校正和立体校正
    def rectifyImage(self, image1, image2, map1x, map1y, map2x, map2y):
        rectifyed_img1 = cv2.remap(image1, map1x, map1y, cv2.INTER_AREA)
        rectifyed_img2 = cv2.remap(image2, map2x, map2y, cv2.INTER_AREA)
        return rectifyed_img1, rectifyed_img2
        
    # 立体校正检验----画线
    def draw_line(self, image1, image2):
        # 建立输出图像
        height = max(image1.shape[0], image2.shape[0])
        width = image1.shape[1] + image2.shape[1]

        output = np.zeros((height, width, 3), dtype=np.uint8)
        output[0:image1.shape[0], 0:image1.shape[1]] = image1
        output[0:image2.shape[0], image1.shape[1]:] = image2

        # 绘制等间距平行线
        line_interval = 50  # 直线间隔:50
        for k in range(height // line_interval):
            cv2.line(output, (0, line_interval * (k + 1)), (2 * width, line_interval * (k + 1)), (0, 255, 0), thickness=2, lineType=cv2.LINE_AA)

        return output

    # 视差计算
    def stereoMatchSGBM(self, left_image, right_image, down_scale=False):
        # SGBM匹配参数设置
        if left_image.ndim == 2:
            img_channels = 1
        else:
            img_channels = 3
        blockSize = 3
        paraml = {'minDisparity': 0,
                 'numDisparities': 128,
                 'blockSize': blockSize,
                 'P1': 8 * img_channels * blockSize ** 2,
                 'P2': 32 * img_channels * blockSize ** 2,
                 'disp12MaxDiff': -1,
                 'preFilterCap': 63,
                 'uniquenessRatio': 10,
                 'speckleWindowSize': 100,
                 'speckleRange': 1,
                 'mode': cv2.STEREO_SGBM_MODE_SGBM_3WAY
                 }

        # 构建SGBM对象
        left_matcher = cv2.StereoSGBM_create(**paraml)
        paramr = paraml
        paramr['minDisparity'] = -paraml['numDisparities']
        right_matcher = cv2.StereoSGBM_create(**paramr)

        # 计算视差图
        size = (left_image.shape[1], left_image.shape[0])
        if down_scale == False:
            disparity_left = left_matcher.compute(left_image, right_image)
            disparity_right = right_matcher.compute(right_image, left_image)

        else:
            left_image_down = cv2.pyrDown(left_image)
            right_image_down = cv2.pyrDown(right_image)
            factor = left_image.shape[1] / left_image_down.shape[1]
            
            disparity_left_half = left_matcher.compute(left_image_down, right_image_down)
            disparity_right_half = right_matcher.compute(right_image_down, left_image_down)
            disparity_left = cv2.resize(disparity_left_half, size, interpolation=cv2.INTER_AREA)
            disparity_right = cv2.resize(disparity_right_half, size, interpolation=cv2.INTER_AREA)
            disparity_left = factor * disparity_left
            disparity_right = factor * disparity_right
            
        trueDisp_left = disparity_left.astype(np.float32) / 16.
        trueDisp_right = disparity_right.astype(np.float32) / 16.
        return trueDisp_left, trueDisp_right

5.3 测距代码

if save_img or view_img:  # Add bbox to image
    label = f'{names[int(cls)]} {conf:.2f}'
    plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
    x = (xyxy[0] + xyxy[2]) / 2
    y = (xyxy[1] + xyxy[3]) / 2
    if (x <= 1280):
        t3 = time_synchronized()
        p = num

        height_0, width_0 = im0.shape[0:2]
        iml = im0[0:int(height_0), 0:int(width_0 / 2)]
        imr = im0[0:int(height_0), int(width_0 / 2):int(width_0)]

        height, width = iml.shape[0:2]
        config = stereoconfig.stereoCamera()
        map1x, map1y, map2x, map2y, Q = getRectifyTransform(height, width, config)
        iml_rectified, imr_rectified = rectifyImage(iml, imr, map1x, map1y, map2x, map2y)

        line = draw_line(iml_rectified, imr_rectified)
        iml = undistortion(iml, config.cam_matrix_left, config.distortion_l)
        imr = undistortion(imr, config.cam_matrix_right, config.distortion_r)
        iml_, imr_ = preprocess(iml, imr)
        iml_rectified_l, imr_rectified_r = rectifyImage(iml_, imr_, map1x, map1y, map2x, map2y)

        disp, _ = stereoMatchSGBM(iml_rectified_l, imr_rectified_r, True)
        points_3d = cv2.reprojectImageTo3D(disp, Q)
        dis = ((points_3d[int(y), int(x), 0] ** 2 + points_3d[int(y), int(x), 1] ** 2 + points_3d[
                                int(y), int(x), 2] ** 2) ** 0.5) / 10

5.4 主代码

import argparse
import time
from pathlib import Path
import gol
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
from stereo.dianyuntu_yolo import getRectifyTransform
from stereo import stereoconfig
from stereo.stereo import stereo_threading, MyThread
import threading
def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
    save_img = not opt.nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size

    if trace:
        model = TracedModel(model, device, opt.img_size)

    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    old_img_w = old_img_h = imgsz
    old_img_b = 1

    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Warmup
        if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
            old_img_b = img.shape[0]
            old_img_h = img.shape[2]
            old_img_w = img.shape[3]
            for i in range(3):
                model(img, augment=opt.augment)[0]

        # Inference
        t1 = time_synchronized()
        with torch.no_grad():   # Calculating gradients would cause a GPU memory leak
            pred = model(img, augment=opt.augment)[0]
        t2 = time_synchronized()

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t3 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
                        x = (xyxy[0] + xyxy[2]) / 2
                        y = (xyxy[1] + xyxy[3]) / 2
                        if (x <= 1280):
                            t3 = time_synchronized()
                            p = num

                            height_0, width_0 = im0.shape[0:2]
                            iml = im0[0:int(height_0), 0:int(width_0 / 2)]
                            imr = im0[0:int(height_0), int(width_0 / 2):int(width_0)]

                            height, width = iml.shape[0:2]
                            config = stereoconfig.stereoCamera()
                            map1x, map1y, map2x, map2y, Q = getRectifyTransform(height, width, config)
                            iml_rectified, imr_rectified = rectifyImage(iml, imr, map1x, map1y, map2x, map2y)

                            line = draw_line(iml_rectified, imr_rectified)
                            iml = undistortion(iml, config.cam_matrix_left, config.distortion_l)
                            imr = undistortion(imr, config.cam_matrix_right, config.distortion_r)
                            iml_, imr_ = preprocess(iml, imr)
                            iml_rectified_l, imr_rectified_r = rectifyImage(iml_, imr_, map1x, map1y, map2x, map2y)

                            disp, _ = stereoMatchSGBM(iml_rectified_l, imr_rectified_r, True)
                            points_3d = cv2.reprojectImageTo3D(disp, Q)

                            text_cxy = "*"
                            cv2.putText(im0, text_cxy, (int(x), int(y)), cv2.FONT_ITALIC, 1.2, (0, 0, 255), 3)

                            print('点 (%d, %d) 的三维坐标 (x:%.1fcm, y:%.1fcm, z:%.1fcm)' % (
                            int(x), int(y), points_3d[int(y), int(x), 0] / 10, points_3d[int(y), int(x), 1] / 10,
                            points_3d[int(y), int(x), 2] / 10))

                            dis = ((points_3d[int(y), int(x), 0] ** 2 + points_3d[int(y), int(x), 1] ** 2 + points_3d[
                                int(y), int(x), 2] ** 2) ** 0.5) / 10
                            print('点 (%d, %d) 的 %s 距离左摄像头的相对距离为 %0.1f cm' % (x, y, label, dis))

                            text_x = "x:%.1fcm" % (points_3d[int(y), int(x), 0] / 10)
                            text_y = "y:%.1fcm" % (points_3d[int(y), int(x), 1] / 10)
                            text_z = "z:%.1fcm" % (points_3d[int(y), int(x), 2] / 10)
                            text_dis = "dis:%.1fcm" % dis

                            cv2.rectangle(im0, (int(xyxy[0] + (xyxy[2] - xyxy[0])), int(xyxy[1])),
                                          (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5 + 220), int(xyxy[1] + 150)),
                                          colors[int(cls)], -1)
                            cv2.putText(im0, text_x, (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5), int(xyxy[1] + 30)),
                                        cv2.FONT_ITALIC, 1.2, (255, 255, 255), 3)
                            cv2.putText(im0, text_y, (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5), int(xyxy[1] + 65)),
                                        cv2.FONT_ITALIC, 1.2, (255, 255, 255), 3)
                            cv2.putText(im0, text_z, (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5), int(xyxy[1] + 100)),
                                        cv2.FONT_ITALIC, 1.2, (255, 255, 255), 3)
                            cv2.putText(im0, text_dis, (int(xyxy[0] + (xyxy[2] - xyxy[0]) + 5), int(xyxy[1] + 145)),
                                        cv2.FONT_ITALIC, 1.2, (255, 255, 255), 3)

                            t4 = time_synchronized()
                            print(f'Done. ({t4 - t3:.3f}s)')

                    print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Print time (inference + NMS)
            print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                    print(f" The image with the result is saved in: {save_path}")
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer.write(im0)
                    cv2.namedWindow("Video", cv2.WINDOW_NORMAL)
                    cv2.resizeWindow("Video", 1280, 480)
                    cv2.moveWindow("Video", 0, 0)
                    cv2.imshow("Video", im0)
                    cv2.waitKey(1)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        #print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='inference/a5.mp4', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
    opt = parser.parse_args()
    print(opt)
    #check_requirements(exclude=('pycocotools', 'thop'))

    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)
            for opt.weights in ['yolov7.pt']:
                detect()
                strip_optimizer(opt.weights)
        else:
            detect()

6.实验结果

效果图如下:

检测视频

源代码后续会开源,敬请期待…
如需要更快检测速度多线程代码,请私信我

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
心中带点小风骚的头像心中带点小风骚普通用户
上一篇 2023年6月26日
下一篇 2023年6月26日

相关推荐