上一篇博客介绍了双层优化的基本原理和使用KKT条件求解双层优化的方法:
双层优化入门(1)—基本原理与求解方法
这篇博客将介绍使用yalmip的双层优化问题的求解方法。
1.KKT函数
通过调用yalmip工具箱中的KKT函数,可以直接求出优化问题的KKT条件,省去自己手动写的步骤,函数用法如下:
[KKTsystem, details] = kkt(Constraint,Objective,z)
其中z表示优化变量,KKTsystem存储KKT条件的约束表达式,details是一个结构体变量,用于存储KKT条件的细节。以上一篇博客中双层优化问题的下层优化问题为例:
matlab代码:
%% 目标函数和约束条件
x=sdpvar(1);
y=sdpvar(1);
Constraints=[-3*x+y <= -3 , 3*x+y <= 30];
objective=-y;
[KKTsystem, details] = kkt(Constraints,objective,x);
运行结果:
将下层优化的KKT条件作为约束添加到上层优化中,就可以求出这个双层优化的结果:
%% 清空
clc
clear
close all
warning off
%% 目标函数和约束条件
x=sdpvar(1);
y=sdpvar(1);
Constraints_down=[-3*x+y <= -3 , 3*x+y <= 30];
objective_down=-y;
[KKTsystem , details] = kkt(Constraints_down,objective_down,x);
Constraints_up=[2*x-3*y >= -12 , x+y <= 14];
objective_up=-x-2*y;
ops=sdpsettings('verbose', 0 , 'solver', 'gurobi');
result=optimize([KKTsystem,Constraints_up,boundingbox([Constraints_up,Constraints_down])],objective_up,ops);
%% 输出模型
saveampl(KKTsystem,objective_down,'KKT_model');
%% 输出结果
disp(['最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
disp(['最优函数值=',num2str(value(objective_up))])
求解的结果如下:
和上一篇博客手动写KKT的求解结果一致。
上面的例子是一个简单的线性双层优化问题,yalmip官方文档中给出了使用KKT函数求解非线性双层优化的例子。这个双层优化问题如下:
一样可以用KKT函数求解,代码如下(这是官网提供的代码):
sdpvar x1 x2 y1 y2 y3
OO = -8*x1-4*x2+4*y1-40*y2-4*y3;
OO = OO+OO^2;
CO = [x1>=0, x2>=0];
OI = (x1+2*x2+y1+y2+2*y3)^2;
CI = [[y1 y2 y3] >= 0,
-y1+y2+y3 <= 10,
2*x1-y1+2*y2-0.5*y3 <= 10,
2*x2+2*y1-y2-0.5*y3 <= 9.7];
[K,details] = kkt(CI,OI,[x1 x2])
optimize([K,CO,boundingbox([CI,CO]),details.dual<=100],OO)
求解结果为:
最优目标函数为-0.25
x1=0.0625,x2=0,y1=0,y2=0,y3=0。
2.solvebilevel函数
solvebilevel是yalmip工具箱内置的求解双层优化问题的函数。也就是通过这个函数,不需要咱手动写KKT条件,也不需要使用KKT函数,直接把上、下层优化的目标函数、约束条件往里面一放,就能求出结果。
代码如下:
%% 清空
clc
clear
close all
warning off
%% 目标函数和约束条件
x=sdpvar(1);
y=sdpvar(1);
Constraints_down=[-3*x+y <= -3 , 3*x+y <= 30];
objective_down=-y;
Constraints_up=[2*x-3*y >= -12 , x+y <= 14];
objective_up=-x-2*y;
solvebilevel(Constraints_up,objective_up,Constraints_down,objective_down,y)
%% 输出结果
disp(['最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
disp(['最优函数值=',num2str(value(objective_up))])
求解结果如下:
和上篇博客手动写KKT条件,这篇博客利用KKT函数求解的结果都是一样的,确实比较省事。但也要注意,这个函数只适用于规模较小的问题,如果问题规模比较大,还是需要自己手动进行双层问题的求解。
完整代码可以从这里获取:
双层优化入门(2)-基于yalmip的双层优化求解
参考资料均来源于yalmip官方文档:
[1]KKT函数的用法介绍
[2]双层优化的求解
[3]双层优化求解的备用方法
[4]solvebilevel函数用法介绍
文章出处登录后可见!