图标点选验证码识别—python破解代码

在线测试:http://121.4.108.95:8000/index/
开源地址:https://github.com/Bump-mann/simple_ocr

首先我们看一个较简单的图标点选验证码
请添加图片描述
从上面图片中依次点击以下图形
请添加图片描述 请添加图片描述 请添加图片描述
笔者的思路(其实就是对着别人的抄)是先识别出图形切割下来,然后分别对比相似度,就可以得出需要点击位置啦~

模型下载链接放在文章末尾!

显而易见,识别分为两部分,以下为目标识别代码

'''
分割图标点选验证码图片的各个图标

'''


import os
import sys
import time
from io import BytesIO

import onnxruntime
import torch
import torchvision

import numpy as np

import cv2

# 图像处理
from PIL import Image


def padded_resize(im, new_shape=(640, 640), stride=32):
    try:
        shape = im.shape[:2]

        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
        # dw, dh = np.mod(dw, stride), np.mod(dh, stride)
        dw /= 2
        dh /= 2
        if shape[::-1] != new_unpad:  # resize
            im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
        im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # add border
        # Convert
        im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        im = np.ascontiguousarray(im)
        im = torch.from_numpy(im)
        im = im.float()
        im /= 255
        im = im[None]
        im = im.cpu().numpy()  # torch to numpy
        return im
    except:
        print("123")


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def box_iou(box1, box2):
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)


def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
                        labels=(), max_det=300):
    """Runs Non-Maximum Suppression (NMS) on inference results

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    nc = prediction.shape[2] - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    # Settings
    min_wh, max_wh = 2, 7680  # (pixels) minimum and maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 10.0  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:  # best class only
            conf, j = x[:, 5:].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            break  # time limit exceeded

    return output


def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y


def is_ascii(s=''):
    # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
    s = str(s)  # convert list, tuple, None, etc. to str
    return len(s.encode().decode('ascii', 'ignore')) == len(s)


def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
    # Add one xyxy box to image with label
    if self.pil or not is_ascii(label):
        self.draw.rectangle(box, width=self.lw, outline=color)  # box
        if label:
            w, h = self.font.getsize(label)  # text width, height
            outside = box[1] - h >= 0  # label fits outside box
            self.draw.rectangle((box[0],
                                 box[1] - h if outside else box[1],
                                 box[0] + w + 1,
                                 box[1] + 1 if outside else box[1] + h + 1), fill=color)
            # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
            self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
    else:  # cv2
        p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
        cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
        if label:
            tf = max(self.lw - 1, 1)  # font thickness
            w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
            outside = p1[1] - h - 3 >= 0  # label fits outside box
            p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
            cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
            cv2.putText(self.im, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, self.lw / 3, txt_color,
                        thickness=tf, lineType=cv2.LINE_AA)


def return_coordinates(xyxy, conf):
    conf = float(conf.numpy())
    gain = 1.02
    pad = 10
    xyxy = torch.tensor(xyxy).view(-1, 4)
    b = xyxy2xywh(xyxy)  # boxes
    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
    xyxy = xywh2xyxy(b).long()
    c1, c2 = (int(xyxy[0, 0]) + 6, int(xyxy[0, 1]) + 6), (int(xyxy[0, 2]) - 6, int(xyxy[0, 3]) - 6)
    # print(f"leftTop:{c1},rightBottom:{c2},Confidence:{conf*100}%")
    result_dict = {"leftTop": c1, "rightBottom": c2, "Confidence": conf}
    return result_dict


def clip_coords(boxes, shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[:, 0].clamp_(0, shape[1])  # x1
        boxes[:, 1].clamp_(0, shape[0])  # y1
        boxes[:, 2].clamp_(0, shape[1])  # x2
        boxes[:, 3].clamp_(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords


def onnx_model_main(path):
    # onnx
    session = onnxruntime.InferenceSession("./models/图标点选_分割图片.onnx", providers=["CPUExecutionProvider"])
    start = time.time()
    image = open(path, "rb").read()
    img = np.array(Image.open(BytesIO(image)))
    # img = cv2.imread(path)
    # 图像处理
    img = img[:, :, :3]
    im = padded_resize(img)
    # 模型调度
    pred = session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: im})[0]
    pred = torch.tensor(pred)
    pred = non_max_suppression(pred, conf_thres=0.6, iou_thres=0.6, max_det=1000)  # 大于百分之六十的置信度
    coordinate_list = []
    for i, det in enumerate(pred):
        det[:, :4] = scale_coords(im.shape[2:], det[:, :4], img.shape).round()
        for *xyxy, conf, cls in reversed(det):
            # 返回坐标和置信度
            coordinates = return_coordinates(xyxy, conf)

            print(coordinates)
            coordinate_list.append(coordinates)
    # 坐标列表
    coordinate = sorted(coordinate_list, key=lambda a: a["Confidence"])
    data_list = []
    # 用时
    duration = str((time.time() - start))
    if len(coordinate) == 0:
        data = {'message': 'error', 'time': duration}
    else:
        # coordinate = coordinate[-1]
        for coordinate in coordinate_list:
            x = coordinate.get('leftTop')[0]
            y = coordinate.get('leftTop')[1]
            w = coordinate.get('rightBottom')[0] - coordinate.get('leftTop')[0]
            h = coordinate.get('rightBottom')[1] - coordinate.get('leftTop')[1]
            point = f"{x}|{y}|{w}|{h}"
            data = {'message': 'success', 'time': duration, 'point': point}
            data.update(coordinate)
            data_list.append(data)
    print(data_list)
    return data_list


def drow_rectangle(coordinate, path):
    import os
    if "new_%s" % path in os.listdir('./'):
        img = cv2.imread("new_%s" % path)
    else:
        img = cv2.imread(path)
    # 画框
    result = cv2.rectangle(img, coordinate.get("leftTop"), coordinate.get("rightBottom"), (0, 0, 255), 2)
    cv2.imwrite("new_%s" % path, result)  # 返回圈中矩形的图片
    print("返回坐标矩形成功")


# python install pillow


# 分割图片
def cut_image(image, point, name):
    lists = point.split('|')

    box = (int(lists[0]), int(lists[1]), int(lists[2]) + int(lists[0]), int(lists[3]) + int(lists[1]))
    images = image.crop(box)

    images.save('{}.png'.format(name), 'PNG')


from os import path


def scaner_file(url):
    lists = []
    # 遍历当前路径下所有文件
    file = os.listdir(url)
    for f in file:
        # 字符串拼接
        # real_url = path.join (url , f)
        # 打印出来
        # print(real_url)
        lists.append([url, f])
    return lists

# Hash值对比
def cmpHash(hash1, hash2,shape=(10,10)):
    n = 0
    # hash长度不同则返回-1代表传参出错
    if len(hash1)!=len(hash2):
        return -1
    # 遍历判断
    for i in range(len(hash1)):
        # 相等则n计数+1,n最终为相似度
        if hash1[i] == hash2[i]:
            n = n + 1
    return n/(shape[0]*shape[1])
# 均值哈希算法
def aHash(img,shape=(10,10)):



    # 缩放为10*10
    img = cv2.resize(img, shape)
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # s为像素和初值为0,hash_str为hash值初值为''
    s = 0
    hash_str = ''
    # 遍历累加求像素和
    for i in range(shape[0]):
        for j in range(shape[1]):
            s = s + gray[i, j]
    # 求平均灰度
    avg = s / 100
    # 灰度大于平均值为1相反为0生成图片的hash值
    for i in range(shape[0]):
        for j in range(shape[1]):
            if gray[i, j] > avg:
                hash_str = hash_str + '1'
            else:
                hash_str = hash_str + '0'
    return hash_str

'''

以下是测试代码
'''
if __name__ == '__main__':


    #图片路径
    path = r'C:\Users\qiu_feng\Desktop\d1e81bb61df84abfaa41ae92a5e6c787.jpg'
    coordinate_onnx = onnx_model_main(path)
    num = 0
    for j in coordinate_onnx:
        num += 1

        image = Image.open(path)  # 读取图片
        name = path[:-4:] + '__切割后图片_' + str(num)
        cut_image(image, j['point'], name)



效果如下:

有些龟裂是因为我加了一些自以为可以“提高”识别效果的东西…

以下是相似度代码

'''


图片相似度对比 适用于图标点选
'''


import os

import cv2
import tensorflow as tf
import numpy as np
from PIL import Image
from  .nets.siamese import siamese
from  .utils.utils import letterbox_image, preprocess_input, cvtColor, show_config

# -----------nets----------------------------------------#
#   使用自己训练好的模型预测需要修改model_path参数
# ---------------------------------------------------#
class Siamese(object):
    _defaults = {
        # -----------------------------------------------------#
        #   使用自己训练好的模型进行预测一定要修改model_path
        #   model_path指向logs文件夹下的权值文件
        # -----------------------------------------------------#
        "model_path": './models/图标点选_相似度.h5',
        # -----------------------------------------------------#
        #   输入图片的大小。
        # -----------------------------------------------------#
        "input_shape": [60, 60],
        # --------------------------------------------------------------------#
        #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize
        #   否则对图像进行CenterCrop
        # --------------------------------------------------------------------#
        "letterbox_image": True,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    # ---------------------------------------------------#
    #   初始化Siamese
    # ---------------------------------------------------#
    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        for name, value in kwargs.items():
            setattr(self, name, value)

        self.generate()

        show_config(**self._defaults)

    # ---------------------------------------------------#
    #   载入模型
    # ---------------------------------------------------#
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
        # ---------------------------#
        #   载入模型与权值
        # ---------------------------#
        self.model = siamese([self.input_shape[0], self.input_shape[1], 3])
        self.model.load_weights(self.model_path)
        print('{} model loaded.'.format(model_path))

    @tf.function
    def get_pred(self, photo):
        preds = self.model(photo, training=False)
        return preds

    # ---------------------------------------------------#
    #   检测图片
    # ---------------------------------------------------#
    def detect_image(self, image_1, image_2):
        # ---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        # ---------------------------------------------------------#
        image_1 = cvtColor(image_1)
        image_2 = cvtColor(image_2)

        # ---------------------------------------------------#
        #   对输入图像进行不失真的resize
        # ---------------------------------------------------#
        image_1 = letterbox_image(image_1, [self.input_shape[1], self.input_shape[0]], self.letterbox_image)
        image_2 = letterbox_image(image_2, [self.input_shape[1], self.input_shape[0]], self.letterbox_image)

        # ---------------------------------------------------------#
        #   归一化+添加上batch_s  ize维度
        # ---------------------------------------------------------#
        photo1 = np.expand_dims(preprocess_input(np.array(image_1, np.float32)), 0)
        photo2 = np.expand_dims(preprocess_input(np.array(image_2, np.float32)), 0)

        # ---------------------------------------------------#
        #   获得预测结果,output输出为概率
        # ---------------------------------------------------#
        output = np.array(self.get_pred([photo1, photo2])[0])

        # plt.subplot(1, 2, 1)
        # plt.imshow(np.array(image_1))
        #
        # plt.subplot(1, 2, 2)
        # plt.imshow(np.array(image_2))
        # plt.text(-12, -12, 'Similarity:%.3f' % output, ha='center', va='bottom', fontsize=11)
        # plt.show()
        return output




'''
以下是测试代码 (本来想着在每个代码下面加测试来着,但是认为不好就废弃掉了)
'''

if __name__ == '__main__':
    gpus = tf.config.experimental.list_physical_devices(device_type='GPU')

    for gpu in gpus:
        tf.config.experimental.set_memory_growth(gpu, True)

    model = Siamese()



    for i in range(1,6):
        image_1 = Image.open('../test/图标点选/背景图__切割后图片_{}.png'.format(i))
        max = 0
        for j in range(1,4):


            image_2 = Image.open('../test/图标点选/图形_{}.png'.format(j))

            probability = model.detect_image(image_1, image_2)

            #相似度低的就直接排除了
            if probability[0] >0.5:
                print('背景图__切割后图片_{}.png'.format(i),'和','图形_{}.png'.format(j),'相似度为:',probability)

        # print(image_1_name,'和',image_2_name,'相似度最高')

效果如下

这样我们就知道每个图形的坐标及与相似度,即可得到点击坐标啦~

效果图如下
请添加图片描述

链接:https://pan.baidu.com/s/1rxY2x3J8wwgEsv0nBBaPPQ?pwd=cokk 提取码:cokk
最新模型会在github更新,最新模型请前往github获取

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2023年9月2日
下一篇 2023年9月2日

相关推荐