Windows YOLOv5-TensorRT部署

环境

CUDA 11.1

OpenCV 4.5.1(不限制版本)

TensorRT 7.2

VS2019

TensorRT安装测试

1、将TensorRT压缩包解压

2、将 TensorRT-7.2.1.6\include中头文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include

3、将TensorRT-7.2.1.6\lib中所有lib文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\lib\x64
4、将TensorRT-7.2.1.6\lib中所有dll文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin

验证TensorRT是否安装成功

1-用VS2019打开 TensorRT-7.2.1.6\samples\sampleMNIST\sample_mnist.sln
2- 在VS2019中,右键工程,选择属性->配置属性->常规->目标平台版本->10.0
3- 在VS2019中,右键工程,选择属性->配置属性->常规->平台工具集->vs2019(v142)
4- 右键工程->重新生成
5- 用anaconda 进入TensorRT-7.2.1.6\data\mnist目录,运行python download_pgms.py
6- 进入TensorRT-7.2.1.6\bin,双击sample_mnist.exe,如果没有报错则说配置成功。

Windows YOLOv5-TensorRT部署

这是安装成功

配置VS

注意:以下步骤可能会导致程序异常,配置时请注意!

属性

Windows YOLOv5-TensorRT部署

选择VC++目录->包含目录

Windows YOLOv5-TensorRT部署

选择 VC++目录->库目录

Windows YOLOv5-TensorRT部署

选择 链接器->输入->附加依赖项(opencv动态库+CUDA动态库)

Windows YOLOv5-TensorRT部署

导出权重文件

准备好训练完的best.pt

打开gen_wts.py文件,终端输入命令:python gen_wts.py -w best.pt

运行结束后会生成best.wts文件

Windows YOLOv5-TensorRT部署

生成engine

找到yolov5T文件夹,打开yolov5T.sln,打开yolov5T.cpp

先将wts文件路径输入,再将下面改为-s

Windows YOLOv5-TensorRT部署

运行需要一些时间,成功后的效果如下:

Windows YOLOv5-TensorRT部署

我们输入engine文件路径和图片路径,将下面-s改为-d

Windows YOLOv5-TensorRT部署

选择 Build->Rebuild Solution,然后运行

运行结果:

基本上每张图检测速度大约在8ms左右

Windows YOLOv5-TensorRT部署

OK,到这里我们就部署成功了

如果需要代码,请在评论区留言。

这是第一次发博,欢迎大家一起讨论学习

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2022年3月25日 下午4:09
下一篇 2022年3月25日

相关推荐

此站出售,如需请站内私信或者邮箱!