pytorch–>optimizer.zero_grad()、loss.backward()、optimizer.step()和scheduler.step()

优化器optimizer的作用

优化器就是需要根据网络反向传播的梯度信息来更新网络的参数,以起到降低loss函数值的作用。
一般来说,以下三个函数的使用顺序如下:

  # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

在:
optimizer.zero_grad():先将梯度归零
loss.backward():反向传播计算得到每个参数的梯度值
optimizer.step():通过梯度下降执行一步参数更新

optimizer.zero_grad()

训练的过程通常使用mini-batch方法,所以如果不将梯度清零的话,梯度会与上一个batch的数据相关,因此该函数要写在反向传播和梯度下降之前。

     def zero_grad(self):
        r"""Clears the gradients of all optimized :class:`torch.Tensor` s."""
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is not None:
                    p.grad.detach_()
                    p.grad.zero_()

optimizer.zero_grad()函数会遍历模型的所有参数,通过p.grad.detach_()方法截断反向传播的梯度流,再通过p.grad.zero_()函数将每个参数的梯度值设为0,即上一次的梯度记录被清空。

loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前

optimizer.step():

optimizer.step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
那么为什么optimizer.step()需要放在每一个batch训练中,而不是epoch训练中,这是因为现在的mini-batch训练模式是假定每一个训练集就只有mini-batch这样大,因此实际上可以将每一次mini-batch看做是一次训练,一次训练更新一次参数空间,因而optimizer.step()放在这里。
注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

以SGD为例,torch.optim.SGD().step()源码如下

  def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()
 
        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']
 
            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0:
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov:
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf
 
                p.data.add_(-group['lr'], d_p)
 
        return loss

scheduler.step()

scheduler.step()按照Pytorch的定义是用来更新优化器的学习率的,一般是按照epoch为单位进行更换,即多少个epoch后更换一次学习率,因而scheduler.step()放在epoch这个大循环下。

optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9)
scheduler = lr_scheduler.StepLR(optimizer, step_size = 100, gamma = 0.1)
model = net.train(model, loss_function, optimizer, scheduler, num_epochs = 100)

在scheduler的step_size表示scheduler.step()每调用step_size次,对应的学习率就会按照策略调整一次。所以如果scheduler.step()是放在mini-batch里面,那么step_size指的是经过这么多次迭代,学习率改变一次。

参考:https://blog.csdn.net/qq_41468616/article/details/121244698
https://blog.csdn.net/qq_20622615/article/details/83150963

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2022年3月28日
下一篇 2022年3月28日

相关推荐