Wide&Deep 论文实现

为了实现Deep Feedback Network for Recommendation 这篇文章中工业级算法,发现这篇文章的基础是Wide&Deep, 只不过增加了三个transformer 以及机器的self-attention机制, 关键在于Wide&Deep 这篇算法的实现, 当然DFN中的反馈机制与我目前的视频推荐很类似, 只不过wechat 研究的是story 推荐。整篇文章的核心内容以及公式请在网上去查找, 相应的都有很多。我尽最大程度上还原了改论文的思想,以及文中提出的特征交

为了实现Deep Feedback Network for Recommendation 这篇文章中工业级算法,发现这篇文章的基础是Wide&Deep, 只不过增加了三个transformer 以及机器的self-attention机制, 关键在于Wide&Deep 这篇算法的实现, 当然DFN中的反馈机制与我目前的视频推荐很类似, 只不过wechat 研究的是story 推荐。整篇文章的核心内容以及公式请在网上去查找, 相应的都有很多。我尽最大程度上还原了改论文的思想,以及文中提出的特征交互,广义线性结构,多层前馈网络,以及最后的组件组合:

Wide&Deep 论文实现

 同时将总的logistic loss 返回到各个组件进行参数的更新。

两个优化器如下:

Wide&Deep 论文实现

论文代码的实现全部采用tensorflow2 实现, 很容易上手。 代码中的细节就自己推敲吧,很激动全部采用手动实现。有关FTRL 优化器,建议对这部分进行详细的了解,本来想自己实现的,很简单,但是没有时间。

为了方便初学者的理解, 我构建了一个数据模拟器,采用特征工程接口做了处理,其实可以手动实现,但是肯定达不到keras 的效果,就放弃了,主要是在一些小细节的时候不容易实现。

直接上代码:

import tensorflow as tf
import numpy as np
from tensorflow.keras.models import Sequential


'''
@name: kenny adelaide
@email: kenny13141314@163.com
@time: 2022/1/8
@description: Wide & Deep Learning for Recommender Systems implementation.
'''

class Wide(tf.keras.Model):
    '''
    this is a linear struct for learning some rules had defined,
    it's input is a sparse matrix via as one-hot data.
    '''


    def __init__(self, Trained=True, **kwargs):
        super().__init__(**kwargs)
        self.Trained = Trained

    def build(self, input_shape):
        self.W = tf.Variable(initial_value=tf.random.truncated_normal([input_shape[1], 1],
                                                                      dtype=tf.float32),
                             dtype=tf.float32, name='wide_weight')
        self.b = tf.Variable(tf.zeros(shape=(1, 1),
                                      dtype=tf.float32,
                                      name='wide_bias').numpy(),
                             dtype=tf.float32)

    def call(self, inputs):
        return tf.transpose(tf.matmul(self.W,
                                      inputs,
                                      transpose_a=True,
                                      transpose_b=True)
                            + self.b)


class Deep(tf.keras.Model):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        # self.input_layer = tf.keras.Input(shape=(100, None))
        self.hidden1 = tf.keras.layers.Dense(512,
                                             activation='relu',
                                             name='deep_hidden1')
        self.hidden2 = tf.keras.layers.Dense(216,
                                             activation='relu',
                                             name='deep_hidden2')

        self.hidden3 = tf.keras.layers.Dense(1,
                                             activation='relu',
                                             name='deep_hidden3', trainable=False)
        '''
        in order to update the weight via loss, hence, the last dense's weight will not changed or updated.
        set trainable = False, means that the loss result will be useful for wide and deep part directly.
        '''

    def call(self, inputs,
             training=None,
             mask=None):
        output1 = inputs
        output2 = self.hidden1(output1)
        output3 = self.hidden2(output2)
        output4 = self.hidden3(output3)
        return output4


class Estimate(object):
    '''
    this is a estimate object for machine learning.
    '''

    def __init__(self):
        pass

    def wide_deep_joint_train(self, wide_deep_input, y):
        '''
        joint training.
        :return:
        '''
        result = tf.keras.layers.Dense(1, activation='sigmoid')(wide_deep_input)
        # print(result)
        # rows, cols = np.nonzero(y)
        # pred_y = y
        #
        # for i in range(0, len(rows)):
        #     pred_y[rows[i], cols[i]] = result[rows[i]]
        #
        # print(result-pred_y)


class DataGenerate(object):
    '''
    this is a data-generation machine for training data.
    '''

    def __init__(self, shape):
        self.embedding_weight = tf.Variable(initial_value=tf.random.truncated_normal(shape=shape,
                                                                                     dtype=tf.float32),
                                            dtype=tf.float32,
                                            name='embedding_weight')

    def embedding_look(self, ids, values, shape):
        ids = tf.SparseTensor(indices=ids, values=values, dense_shape=shape)
        result = tf.compat.v1.nn.embedding_lookup_sparse(self.embedding_weight, ids, None,
                                                         partition_strategy="div", combiner='mean')
        return result

    def making_ebedding_bacpage(self, filed):
        filed = np.array(filed).reshape(len(filed), 1)

        filed_values = []
        filed_ids = []
        for i in range(0, len(filed)):
            filed_ids.append([i, 0])
            filed_values.append(filed[i][0])
        embedding = self.embedding_look(filed_ids, filed_values, shape=filed.shape)
        return embedding

    def wide_input_generate_data(self):
        notes = 1000000
        are = np.random.randint(0, 100, notes).reshape(notes, 1)
        professional = np.random.randint(0, 1000, notes).reshape(notes, 1)
        isplay = np.random.randint(0, 2, notes).reshape(notes, 1)

        _are = [are[i][0] for i in range(0, len(are))]
        _professional = [professional[i][0] for i in range(0, len(professional))]
        _isplay = [isplay[i][0] for i in range(0, len(isplay))]

        are_one_hot = tf.one_hot(_are, len(set(_are)), dtype=tf.int32)
        professional_one_hot = tf.one_hot(_professional, len(set(_professional)), dtype=tf.int32)
        isplay_one_hot = tf.one_hot(_isplay, len(set(_isplay)), dtype=tf.int32)

        _are_embedding = self.making_ebedding_bacpage(_are)
        _professional_embedding = self.making_ebedding_bacpage(_professional)
        _isplay_embedding = self.making_ebedding_bacpage(_isplay)
        _embeddings = tf.concat([_are_embedding, _professional_embedding], axis=1)
        _embeddings = tf.concat([_embeddings, _isplay_embedding], axis=1)

        X = tf.concat([are_one_hot, professional_one_hot], axis=1)
        X = tf.concat([X, isplay_one_hot], axis=1)
        X = tf.Variable(X.numpy(), dtype=tf.float32)

        Y = tf.Variable(np.random.randint(0,
                                          1000,
                                          X.shape[0]).reshape(X.shape[0], 1),
                        dtype=tf.float32)

        departments = ['sport', 'sport', 'drawing', 'gardening', 'travelling']
        department_indexs = np.random.randint(0, 5, notes)
        _departments = []
        [_departments.append(departments[department_indexs[i]]) for i in range(0, len(department_indexs))]

        # 特征数据
        features = {
            'age': np.random.randint(18, 100, notes),
            'department': _departments,
        }

        department = tf.feature_column.categorical_column_with_vocabulary_list('department',
                                                                               ['sport', 'drawing', 'gardening',
                                                                                'travelling'], dtype=tf.string)
        age = tf.feature_column.categorical_column_with_identity('age',
                                                                 num_buckets=notes,
                                                                 default_value=18)
        age_department = tf.feature_column.crossed_column([department, age],
                                                          30)
        age_department = tf.feature_column.indicator_column(age_department)
        # 组合特征列
        columns = [
            age_department,
        ]

        cross_feature_inputs = tf.compat.v1.feature_column.input_layer(features, columns)

        # before contacting two data, we need pre-process data as float.

        wide_X = tf.concat([X,
                            cross_feature_inputs.numpy()],
                           axis=1)

        deep_X = _embeddings
        return wide_X, deep_X, Y


wide_X, deep_X, Y = DataGenerate(shape=[100000, 10]).wide_input_generate_data()

wide = Wide()
deep = tf.keras.Sequential(
    [
        tf.keras.layers.Dense(216,
                              activation='relu',
                              name='deep_hidden1'),
        tf.keras.layers.Dense(108,
                              activation='relu',
                              name='deep_hidden2'),

        tf.keras.layers.Dense(1,
                              activation='relu',
                              name='deep_hidden3', trainable=False)
    ]
)

#
estimate = Estimate()
# estimate.train(model=wide,
#                X=wide_X,
#                y=Y,
#                learning_rate=0.01,
#                iters=10000)

# wide.Trained = False
# print(wide(X))
class_y = tf.keras.utils.to_categorical(Y, 1000)
learning_rate = 0.001


def muloss(y, y_pred):
    tf.reduce_mean(
        tf.add(-tf.multiply(y, tf.math.log(y_pred)), -tf.multiply(1 - y, tf.math.log(1 - y_pred))))


optimizers = [
    tf.keras.optimizers.Ftrl(learning_rate=0.1, learning_rate_power=-0.1,
                             initial_accumulator_value=0.1,
                             l1_regularization_strength=0.1,
                             l2_regularization_strength=0.1,
                             l2_shrinkage_regularization_strength=0.0,
                             name='ftrl'),
    tf.keras.optimizers.Adagrad(
        learning_rate=0.1,
        initial_accumulator_value=0.1,
        epsilon=1e-07,
        name='Adagrad')]

for i in range(1000):
    # update wide
    with tf.GradientTape(persistent=True) as tape:
        wide_output = wide(wide_X)
        deep_output = deep(deep_X)
        wide_deep_output = tf.add(deep_output, wide_output)
        result = tf.nn.sigmoid(wide_deep_output)
        loss = tf.reduce_mean(
            tf.add(-tf.multiply(class_y, tf.math.log(result)), -tf.multiply(1 - class_y, tf.math.log(1 - result))))

        print(loss)

    wide_variable_gradient = tape.gradient(loss, wide.trainable_variables)
    optimizers[0].apply_gradients(zip(wide_variable_gradient, wide.trainable_variables))

    dee_variables_gradient = tape.gradient(loss, deep.trainable_variables)
    optimizers[1].apply_gradients(zip(dee_variables_gradient, deep.trainable_variables))

实验loss :

Wide&Deep 论文实现

 Wide&Deep 论文实现

版权声明:本文为博主kennyadelaide原创文章,版权归属原作者,如果侵权,请联系我们删除!

原文链接:https://blog.csdn.net/qq_17674161/article/details/122561946

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
xiaoxingxing的头像xiaoxingxing管理团队
上一篇 2022年1月18日 下午4:00
下一篇 2022年1月18日 下午4:50

相关推荐

此站出售,如需请站内私信或者邮箱!