DataLoader:
DataLoader(dataset=torch_dataset,batch_size=BATCH_SIZE,shuffle=True,num_workers=2)
dataset:
- DataLoader支持的两种数据集
- Iterator格式:例如数组,迭代器等
Shuffle :是否重新整理数据。
num_workers :加载数据所需的子进程数。
import torch
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
BATCH_SIZE = 5
# 生成从 (start,end, steps) start=1开始,end=10结束的,等距的steps个数据点
# tensor([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = torch.linspace(1,10,10)
# tensor([10., 9., 8., 7., 6., 5., 4., 3., 2., 1.])
y = torch.linspace(10,1,10)
# print(x,y)
torch_dataset = TensorDataset(x,y)
loader = DataLoader(dataset=torch_dataset,batch_size=BATCH_SIZE,shuffle=True,num_workers=2)
def show_batch():
for epoch in range(3):
for step, (batch_x, batch_y) in enumerate(loader):
print("step:{}, batch_x:{}, batch_y:{}".format(step,batch_x,batch_y))
# 这样取数据也可
# def show_batch():
# for epoch in range(3):
# for step, data in enumerate(loader):
# batch_x, batch_y = data
# print("step:{}, batch_x:{}, batch_y:{}".format(step,batch_x,batch_y))
if __name__ == '__main__':
show_batch()
TensorDataset
import torch
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
BATCH_SIZE = 5
# 生成从 (start,end, steps) start=1开始,end=10结束的,等距的steps个数据点
# tensor([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = torch.linspace(1,10,10)
# tensor([10., 9., 8., 7., 6., 5., 4., 3., 2., 1.])
y = torch.linspace(10,1,10)
z = torch.linspace(20,30,10)
if __name__ == '__main__':
# show_batch()
torch_dataset = TensorDataset(x,y,z)
# 0:7取index 为0-6的x,y,z
print(torch_dataset[0:7])
文章出处登录后可见!
已经登录?立即刷新