Pytorch中torch.repeat()函数解析

一. torch.repeat()函数解析

1. 说明

官网torch.tensor.repeat(),函数说明如下图所示:

torch.tensor.repeat()

2. 函数功能

torch.tensor.repeat()函数可以对张量进行重复扩充
1) 当参数只有两个时:(行的重复倍数,列的重复倍数),1表示不重复。
2) 当参数有三个时:(通道数的重复倍数,行的重复倍数,列的重复倍数),1表示不重复。

3. 代码例子如下:

3.1 输入一维张量,参数为一个,即表示在列上面进行重复n次

a = torch.randn(3)
a,a.repeat(4)
结果如下所示:
(tensor([ 0.81, -0.57,  0.10]),
 tensor([ 0.81, -0.57,  0.10,  0.81, -0.57,  0.10,  0.81, -0.57,  0.10,  0.81,
         -0.57,  0.10]))

3.2 输入一维张量,参数为两个(m,n),即表示先在列上面进行重复n次,再在行上面重复m次,输出张量为二维

a = torch.randn(3)
a,a.repeat(4,2)
(tensor([ 0.06, -0.76, -0.59]),
 tensor([[ 0.06, -0.76, -0.59,  0.06, -0.76, -0.59],
         [ 0.06, -0.76, -0.59,  0.06, -0.76, -0.59],
         [ 0.06, -0.76, -0.59,  0.06, -0.76, -0.59],
         [ 0.06, -0.76, -0.59,  0.06, -0.76, -0.59]]))

3.3 输入一维张量,参数为三个(b,m,n),即表示先在列上面进行重复n次,再在行上面重复m次,最后在通道上面重复b次,输出张量为三维

a = torch.randn(3)
a,a.repeat(3,4,2)
输出结果如下:
(tensor([2.25, 0.49, 1.47]),
 tensor([[[2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47]],
 
         [[2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47]],
 
         [[2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47],
          [2.25, 0.49, 1.47, 2.25, 0.49, 1.47]]]))

3.4 输入二维张量,参数为两个(m,n),即表示先在列上面进行重复n次,再在行上面重复m次,输出张量为两维注意参数个数必须大于输入张量维度个数

a = torch.randn(3,2)
a,a.repeat(4,2)
输出结果如下:
(tensor([[-0.58, -1.21],
         [-0.35,  0.68],
         [ 0.33,  0.70]]),
 tensor([[-0.58, -1.21, -0.58, -1.21],
         [-0.35,  0.68, -0.35,  0.68],
         [ 0.33,  0.70,  0.33,  0.70],
         [-0.58, -1.21, -0.58, -1.21],
         [-0.35,  0.68, -0.35,  0.68],
         [ 0.33,  0.70,  0.33,  0.70],
         [-0.58, -1.21, -0.58, -1.21],
         [-0.35,  0.68, -0.35,  0.68],
         [ 0.33,  0.70,  0.33,  0.70],
         [-0.58, -1.21, -0.58, -1.21],
         [-0.35,  0.68, -0.35,  0.68],
         [ 0.33,  0.70,  0.33,  0.70]]))

3.5 输入二维张量,参数为三个(b,m,n),即表示先在列上面进行重复n次,再在行上面重复m次,最后在通道上面重复b次,输出张量为三维。(注意输出张量维度个数为参数个数)

a = torch.randn(3,2)
a,a.repeat(3,4,2)
输出结果如下:
(tensor([[-0.75,  1.20],
         [-1.50,  1.75],
         [-0.05,  0.40]]),
 tensor([[[-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40]],
 
         [[-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40]],
 
         [[-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40],
          [-0.75,  1.20, -0.75,  1.20],
          [-1.50,  1.75, -1.50,  1.75],
          [-0.05,  0.40, -0.05,  0.40]]]))

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
上一篇 2022年6月1日 上午11:49
下一篇 2022年6月1日 上午11:52

相关推荐

本站注重文章个人版权,不会主动收集付费或者带有商业版权的文章,如果出现侵权情况只可能是作者后期更改了版权声明,如果出现这种情况请主动联系我们,我们看到会在第一时间删除!本站专注于人工智能高质量优质文章收集,方便各位学者快速找到学习资源,本站收集的文章都会附上文章出处,如果不愿意分享到本平台,我们会第一时间删除!